CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
cURL and libcurl 7.10.6 through 7.41.0 do not properly re-use authenticated Negotiate connections, which allows remote attackers to connect as other users via a request. |
The fix_hostname function in cURL and libcurl 7.37.0 through 7.41.0 does not properly calculate an index, which allows remote attackers to cause a denial of service (out-of-bounds read or write and crash) or possibly have other unspecified impact via a zero-length host name, as demonstrated by "http://:80" and ":80." |
cURL and libcurl 7.10.6 through 7.41.0 does not properly re-use NTLM connections, which allows remote attackers to connect as other users via an unauthenticated request, a similar issue to CVE-2014-0015. |
cURL and libcurl before 7.38.0 allow remote attackers to bypass the Same Origin Policy and set cookies for arbitrary sites by setting a cookie for a top-level domain. |
cURL and libcurl 7.10.6 through 7.34.0, when more than one authentication method is enabled, re-uses NTLM connections, which might allow context-dependent attackers to authenticate as other users via a request. |
The tailMatch function in cookie.c in cURL and libcurl before 7.30.0 does not properly match the path domain when sending cookies, which allows remote attackers to steal cookies via a matching suffix in the domain of a URL. |
Heap-based buffer overflow in the curl_easy_unescape function in lib/escape.c in cURL and libcurl 7.7 through 7.30.0 allows remote attackers to cause a denial of service (application crash) or possibly execute arbitrary code via a crafted string ending in a "%" (percent) character. |
Stack-based buffer overflow in the Curl_sasl_create_digest_md5_message function in lib/curl_sasl.c in curl and libcurl 7.26.0 through 7.28.1, when negotiating SASL DIGEST-MD5 authentication, allows remote attackers to cause a denial of service (crash) and possibly execute arbitrary code via a long string in the realm parameter in a (1) POP3, (2) SMTP or (3) IMAP message. |
cURL and libcurl 7.18.0 through 7.32.0, when built with OpenSSL, disables the certificate CN and SAN name field verification (CURLOPT_SSL_VERIFYHOST) when the digital signature verification (CURLOPT_SSL_VERIFYPEER) is disabled, which allows man-in-the-middle attackers to spoof SSL servers via an arbitrary valid certificate. |
The SSL protocol, as used in certain configurations in Microsoft Windows and Microsoft Internet Explorer, Mozilla Firefox, Google Chrome, Opera, and other products, encrypts data by using CBC mode with chained initialization vectors, which allows man-in-the-middle attackers to obtain plaintext HTTP headers via a blockwise chosen-boundary attack (BCBA) on an HTTPS session, in conjunction with JavaScript code that uses (1) the HTML5 WebSocket API, (2) the Java URLConnection API, or (3) the Silverlight WebClient API, aka a "BEAST" attack. |
Multiple stack-based buffer overflows in libcURL and cURL 7.12.1, and possibly other versions, allow remote malicious web servers to execute arbitrary code via base64 encoded replies that exceed the intended buffer lengths when decoded, which is not properly handled by (1) the Curl_input_ntlm function in http_ntlm.c during NTLM authentication or (2) the Curl_krb_kauth and krb4_auth functions in krb4.c during Kerberos authentication. |
An allocation of resources without limits or throttling vulnerability exists in curl <v7.88.0 based on the "chained" HTTP compression algorithms, meaning that a server response can be compressed multiple times and potentially with differentalgorithms. The number of acceptable "links" in this "decompression chain" wascapped, but the cap was implemented on a per-header basis allowing a maliciousserver to insert a virtually unlimited number of compression steps simply byusing many headers. The use of such a decompression chain could result in a "malloc bomb", making curl end up spending enormous amounts of allocated heap memory, or trying to and returning out of memory errors. |
A cleartext transmission of sensitive information vulnerability exists in curl <v7.88.0 that could cause HSTS functionality fail when multiple URLs are requested serially. Using its HSTS support, curl can be instructed to use HTTPS instead of usingan insecure clear-text HTTP step even when HTTP is provided in the URL. ThisHSTS mechanism would however surprisingly be ignored by subsequent transferswhen done on the same command line because the state would not be properlycarried on. |
When saving HSTS data to an excessively long file name, curl could end up
removing all contents, making subsequent requests using that file unaware of
the HSTS status they should otherwise use. |
libcurl's ASN1 parser has this utf8asn1str() function used for parsing an ASN.1 UTF-8 string. Itcan detect an invalid field and return error. Unfortunately, when doing so it also invokes `free()` on a 4 byte localstack buffer. Most modern malloc implementations detect this error and immediately abort. Some however accept the input pointer and add that memory to its list of available chunks. This leads to the overwriting of nearby stack memory. The content of the overwrite is decided by the `free()` implementation; likely to be memory pointers and a set of flags. The most likely outcome of exploting this flaw is a crash, although it cannot be ruled out that more serious results can be had in special circumstances. |
When curl retrieves an HTTP response, it stores the incoming headers so that
they can be accessed later via the libcurl headers API.
However, curl did not have a limit in how many or how large headers it would
accept in a response, allowing a malicious server to stream an endless series
of headers and eventually cause curl to run out of heap memory. |
A vulnerability exists in curl <7.87.0 HSTS check that could be bypassed to trick it to keep using HTTP. Using its HSTS support, curl can be instructed to use HTTPS instead of using an insecure clear-text HTTP step even when HTTP is provided in the URL. However, the HSTS mechanism could be bypassed if the host name in the given URL first uses IDN characters that get replaced to ASCII counterparts as part of the IDN conversion. Like using the character UTF-8 U+3002 (IDEOGRAPHIC FULL STOP) instead of the common ASCII full stop (U+002E) `.`. Then in a subsequent request, it does not detect the HSTS state and makes a clear text transfer. Because it would store the info IDN encoded but look for it IDN decoded. |
An improper certificate validation vulnerability exists in curl <v8.1.0 in the way it supports matching of wildcard patterns when listed as "Subject Alternative Name" in TLS server certificates. curl can be built to use its own name matching function for TLS rather than one provided by a TLS library. This private wildcard matching function would match IDN (International Domain Name) hosts incorrectly and could as a result accept patterns that otherwise should mismatch. IDN hostnames are converted to puny code before used for certificate checks. Puny coded names always start with `xn--` and should not be allowed to pattern match, but the wildcard check in curl could still check for `x*`, which would match even though the IDN name most likely contained nothing even resembling an `x`. |
A denial of service vulnerability exists in curl <v8.1.0 in the way libcurl provides several different backends for resolving host names, selected at build time. If it is built to use the synchronous resolver, it allows name resolves to time-out slow operations using `alarm()` and `siglongjmp()`. When doing this, libcurl used a global buffer that was not mutex protected and a multi-threaded application might therefore crash or otherwise misbehave. |
A use after free vulnerability exists in curl <v8.1.0 in the way libcurl offers a feature to verify an SSH server's public key using a SHA 256 hash. When this check fails, libcurl would free the memory for the fingerprint before it returns an error message containing the (now freed) hash. This flaw risks inserting sensitive heap-based data into the error message that might be shown to users or otherwise get leaked and revealed. |