| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An issue was discovered in Django 5.1 before 5.1.5, 5.0 before 5.0.11, and 4.2 before 4.2.18. Lack of upper-bound limit enforcement in strings passed when performing IPv6 validation could lead to a potential denial-of-service attack. The undocumented and private functions clean_ipv6_address and is_valid_ipv6_address are vulnerable, as is the django.forms.GenericIPAddressField form field. (The django.db.models.GenericIPAddressField model field is not affected.) |
| An issue was discovered in Django 5.1 before 5.1.7, 5.0 before 5.0.13, and 4.2 before 4.2.20. The django.utils.text.wrap() method and wordwrap template filter are subject to a potential denial-of-service attack when used with very long strings. |
| Jinja is an extensible templating engine. In versions on the 3.x branch prior to 3.1.5, a bug in the Jinja compiler allows an attacker that controls both the content and filename of a template to execute arbitrary Python code, regardless of if Jinja's sandbox is used. To exploit the vulnerability, an attacker needs to control both the filename and the contents of a template. Whether that is the case depends on the type of application using Jinja. This vulnerability impacts users of applications which execute untrusted templates where the template author can also choose the template filename. This vulnerability is fixed in 3.1.5. |
| Redis is an open source, in-memory database that persists on disk. An authenticated user may use a specially crafted Lua script to manipulate the garbage collector and potentially lead to remote code execution. The problem is fixed in 7.4.2, 7.2.7, and 6.2.17. An additional workaround to mitigate the problem without patching the redis-server executable is to prevent users from executing Lua scripts. This can be done using ACL to restrict EVAL and EVALSHA commands. |
| Redis is an open source, in-memory database that persists on disk. An authenticated user may use a specially crafted Lua script to trigger a stack buffer overflow in the bit library, which may potentially lead to remote code execution. The problem exists in all versions of Redis with Lua scripting. This problem has been fixed in Redis versions 6.2.16, 7.2.6, and 7.4.1. Users are advised to upgrade. There are no known workarounds for this vulnerability. |
| Requests is a HTTP library. Prior to 2.32.0, when making requests through a Requests `Session`, if the first request is made with `verify=False` to disable cert verification, all subsequent requests to the same host will continue to ignore cert verification regardless of changes to the value of `verify`. This behavior will continue for the lifecycle of the connection in the connection pool. This vulnerability is fixed in 2.32.0. |
| An issue was discovered in Django 5.1 before 5.1.4, 5.0 before 5.0.10, and 4.2 before 4.2.17. The strip_tags() method and striptags template filter are subject to a potential denial-of-service attack via certain inputs containing large sequences of nested incomplete HTML entities. |
| A heap use-after-free vulnerability was found in systemd before version v245-rc1, where asynchronous Polkit queries are performed while handling dbus messages. A local unprivileged attacker can abuse this flaw to crash systemd services or potentially execute code and elevate their privileges, by sending specially crafted dbus messages. |
| Versions of the package cross-spawn before 6.0.6, from 7.0.0 and before 7.0.5 are vulnerable to Regular Expression Denial of Service (ReDoS) due to improper input sanitization. An attacker can increase the CPU usage and crash the program by crafting a very large and well crafted string. |
| Issue summary: Clients using RFC7250 Raw Public Keys (RPKs) to authenticate a
server may fail to notice that the server was not authenticated, because
handshakes don't abort as expected when the SSL_VERIFY_PEER verification mode
is set.
Impact summary: TLS and DTLS connections using raw public keys may be
vulnerable to man-in-middle attacks when server authentication failure is not
detected by clients.
RPKs are disabled by default in both TLS clients and TLS servers. The issue
only arises when TLS clients explicitly enable RPK use by the server, and the
server, likewise, enables sending of an RPK instead of an X.509 certificate
chain. The affected clients are those that then rely on the handshake to
fail when the server's RPK fails to match one of the expected public keys,
by setting the verification mode to SSL_VERIFY_PEER.
Clients that enable server-side raw public keys can still find out that raw
public key verification failed by calling SSL_get_verify_result(), and those
that do, and take appropriate action, are not affected. This issue was
introduced in the initial implementation of RPK support in OpenSSL 3.2.
The FIPS modules in 3.4, 3.3, 3.2, 3.1 and 3.0 are not affected by this issue. |
| path-to-regexp turns path strings into a regular expressions. In certain cases, path-to-regexp will output a regular expression that can be exploited to cause poor performance. The regular expression that is vulnerable to backtracking can be generated in the 0.1.x release of path-to-regexp. Upgrade to 0.1.12. This vulnerability exists because of an incomplete fix for CVE-2024-45296. |
| path-to-regexp turns path strings into a regular expressions. In certain cases, path-to-regexp will output a regular expression that can be exploited to cause poor performance. Because JavaScript is single threaded and regex matching runs on the main thread, poor performance will block the event loop and lead to a DoS. The bad regular expression is generated any time you have two parameters within a single segment, separated by something that is not a period (.). For users of 0.1, upgrade to 0.1.10. All other users should upgrade to 8.0.0. |
| Git is a source code management tool. When cloning from a server (or fetching, or pushing), informational or error messages are transported from the remote Git process to the client via the so-called "sideband channel". These messages will be prefixed with "remote:" and printed directly to the standard error output. Typically, this standard error output is connected to a terminal that understands ANSI escape sequences, which Git did not protect against. Most modern terminals support control sequences that can be used by a malicious actor to hide and misrepresent information, or to mislead the user into executing untrusted scripts. As requested on the git-security mailing list, the patches are under discussion on the public mailing list. Users are advised to update as soon as possible. Users unable to upgrade should avoid recursive clones unless they are from trusted sources. |
| Webpack is a module bundler. Its main purpose is to bundle JavaScript files for usage in a browser, yet it is also capable of transforming, bundling, or packaging just about any resource or asset. The webpack developers have discovered a DOM Clobbering vulnerability in Webpack’s `AutoPublicPathRuntimeModule`. The DOM Clobbering gadget in the module can lead to cross-site scripting (XSS) in web pages where scriptless attacker-controlled HTML elements (e.g., an `img` tag with an unsanitized `name` attribute) are present. Real-world exploitation of this gadget has been observed in the Canvas LMS which allows a XSS attack to happen through a javascript code compiled by Webpack (the vulnerable part is from Webpack). DOM Clobbering is a type of code-reuse attack where the attacker first embeds a piece of non-script, seemingly benign HTML markups in the webpage (e.g. through a post or comment) and leverages the gadgets (pieces of js code) living in the existing javascript code to transform it into executable code. This vulnerability can lead to cross-site scripting (XSS) on websites that include Webpack-generated files and allow users to inject certain scriptless HTML tags with improperly sanitized name or id attributes. This issue has been addressed in release version 5.94.0. All users are advised to upgrade. There are no known workarounds for this issue. |
| Versions of the package http-proxy-middleware before 2.0.7, from 3.0.0 and before 3.0.3 are vulnerable to Denial of Service (DoS) due to an UnhandledPromiseRejection error thrown by micromatch. An attacker could kill the Node.js process and crash the server by making requests to certain paths. |
| serve-static serves static files. serve-static passes untrusted user input - even after sanitizing it - to redirect() may execute untrusted code. This issue is patched in serve-static 1.16.0. |
| body-parser is Node.js body parsing middleware. body-parser <1.20.3 is vulnerable to denial of service when url encoding is enabled. A malicious actor using a specially crafted payload could flood the server with a large number of requests, resulting in denial of service. This issue is patched in 1.20.3. |
| Express.js minimalist web framework for node. In express < 4.20.0, passing untrusted user input - even after sanitizing it - to response.redirect() may execute untrusted code. This issue is patched in express 4.20.0. |
| axios 1.7.2 allows SSRF via unexpected behavior where requests for path relative URLs get processed as protocol relative URLs. |
| A flaw was found in krb5. With incremental propagation enabled, an authenticated attacker can cause kadmind to write beyond the end of the mapped region for the iprop log file. This issue can trigger a process crash and lead to a denial of service. |