CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A potential power side-channel vulnerability in some AMD processors may allow an authenticated attacker to use the power reporting functionality to monitor a program’s execution inside an AMD SEV VM potentially resulting in a leak of sensitive information.
|
Improper restriction of write operations in SNP firmware could allow a malicious hypervisor to potentially overwrite a guest's memory or UMC seed resulting in loss of confidentiality and integrity. |
Improper input validation in SEV-SNP could allow a malicious hypervisor to read or overwrite guest memory potentially leading to data leakage or data corruption. |
Improper restriction of write operations in SNP firmware could allow a malicious hypervisor to overwrite a guest's UMC seed potentially allowing reading of memory from a decommissioned guest. |
Improper or unexpected behavior of the INVD instruction in some AMD CPUs may allow an attacker with a malicious hypervisor to affect cache line write-back behavior of the CPU leading to a potential loss of guest virtual machine (VM) memory integrity.
|
A side channel vulnerability on some of the AMD CPUs may allow an attacker to influence the return address prediction. This may result in speculative execution at an attacker-controlled address, potentially leading to information disclosure.
|
Insufficient DRAM address validation in System
Management Unit (SMU) may allow an attacker to read/write from/to an invalid
DRAM address, potentially resulting in denial-of-service. |
Insufficient input validation in the ASP Bootloader may enable a privileged attacker with physical access to expose the contents of ASP memory potentially leading to a loss of confidentiality. |
TOCTOU in the ASP Bootloader may allow an attacker with physical access to tamper with SPI ROM records after memory content verification, potentially leading to loss of confidentiality or a denial of service. |
SMM configuration may not be immutable, as intended, when SNP is enabled resulting in a potential limited loss of guest memory integrity. |
Execution unit scheduler contention may lead to a side channel vulnerability found on AMD CPU microarchitectures codenamed “Zen 1”, “Zen 2” and “Zen 3” that use simultaneous multithreading (SMT). By measuring the contention level on scheduler queues an attacker may potentially leak sensitive information. |
Insufficient DRAM address validation in System
Management Unit (SMU) may allow an attacker to read/write from/to an invalid
DRAM address, potentially resulting in denial-of-service. |
Insufficient validation of addresses in AMD Secure Processor (ASP) firmware system call may potentially lead to arbitrary code execution by a compromised user application. |
An attacker with access to a malicious hypervisor may be able to infer data values used in a SEV guest on AMD CPUs by monitoring ciphertext values over time. |
Improper validation of destination address in SVC_LOAD_FW_IMAGE_BY_INSTANCE and SVC_LOAD_BINARY_BY_ATTRIB in a malicious UApp or ABL may allow an attacker to overwrite arbitrary bootloader memory with SPI ROM contents resulting in a loss of integrity and availability. |
Failure to validate inputs in SMM may allow an attacker to create a mishandled error leaving the DRTM UApp in a partially initialized state potentially resulting in loss of memory integrity.
|
Failure to assign a new report ID to an imported guest may potentially result in an SEV-SNP guest VM being tricked into trusting a dishonest Migration Agent (MA). |
Failure to flush the Translation Lookaside Buffer (TLB) of the I/O memory management unit (IOMMU) may lead an IO device to write to memory it should not be able to access, resulting in a potential loss of integrity. |
Failure to validate the integer operand in ASP (AMD Secure Processor) bootloader may allow an attacker to introduce an integer overflow in the L2 directory table in SPI flash resulting in a potential denial of service. |
Failure to validate the value in APCB may allow a privileged attacker to tamper with the APCB token to force an out-of-bounds memory read potentially resulting in a denial of service. |