Filtered by vendor Cisco
Subscriptions
Filtered by product Firepower Threat Defense
Subscriptions
Total
205 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2022-20934 | 1 Cisco | 2 Firepower Extensible Operating System, Firepower Threat Defense | 2024-11-21 | 6 Medium |
A vulnerability in the CLI of Cisco Firepower Threat Defense (FTD) Software and Cisco FXOS Software could allow an authenticated, local attacker to execute arbitrary commands on the underlying operating system as root. This vulnerability is due to improper input validation for specific CLI commands. An attacker could exploit this vulnerability by injecting operating system commands into a legitimate command. A successful exploit could allow the attacker to escape the restricted command prompt and execute arbitrary commands on the underlying operating system. To successfully exploit this vulnerability, an attacker would need valid Administrator credentials. | ||||
CVE-2022-20928 | 1 Cisco | 2 Adaptive Security Appliance Software, Firepower Threat Defense | 2024-11-21 | 5.8 Medium |
A vulnerability in the authentication and authorization flows for VPN connections in Cisco Adaptive Security Appliance (ASA) Software and Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to establish a connection as a different user. This vulnerability is due to a flaw in the authorization verifications during the VPN authentication flow. An attacker could exploit this vulnerability by sending a crafted packet during a VPN authentication. The attacker must have valid credentials to establish a VPN connection. A successful exploit could allow the attacker to establish a VPN connection with access privileges from a different user. | ||||
CVE-2022-20927 | 1 Cisco | 3 Adaptive Security Appliance Software, Firepower Services Software For Asa, Firepower Threat Defense | 2024-11-21 | 7.7 High |
A vulnerability in the SSL/TLS client of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to improper memory management when a device initiates SSL/TLS connections. An attacker could exploit this vulnerability by ensuring that the device will connect to an SSL/TLS server that is using specific encryption parameters. A successful exploit could allow the attacker to cause the affected device to unexpectedly reload, resulting in a DoS condition. | ||||
CVE-2022-20924 | 1 Cisco | 2 Adaptive Security Appliance Software, Firepower Threat Defense | 2024-11-21 | 7.7 High |
A vulnerability in the Simple Network Management Protocol (SNMP) feature of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient input validation. An attacker could exploit this vulnerability by sending a crafted SNMP request to an affected device. A successful exploit could allow the attacker to cause the affected device to reload, resulting in a DoS condition. | ||||
CVE-2022-20922 | 1 Cisco | 3 Cyber Vision, Firepower Threat Defense, Umbrella Insights Virtual Appliance | 2024-11-21 | 5.8 Medium |
Multiple vulnerabilities in the Server Message Block Version 2 (SMB2) processor of the Snort detection engine on multiple Cisco products could allow an unauthenticated, remote attacker to bypass the configured policies or cause a denial of service (DoS) condition on an affected device. These vulnerabilities are due to improper management of system resources when the Snort detection engine is processing SMB2 traffic. An attacker could exploit these vulnerabilities by sending a high rate of certain types of SMB2 packets through an affected device. A successful exploit could allow the attacker to trigger a reload of the Snort process, resulting in a DoS condition. Note: When the snort preserve-connection option is enabled for the Snort detection engine, a successful exploit could also allow the attacker to bypass the configured policies and deliver a malicious payload to the protected network. The snort preserve-connection setting is enabled by default. See the Details ["#details"] section of this advisory for more information. Note: Only products that have Snort 3 configured are affected. Products that are configured with Snort 2 are not affected. | ||||
CVE-2022-20866 | 1 Cisco | 34 Adaptive Security Appliance Software, Asa 5506-x, Asa 5506h-x and 31 more | 2024-11-21 | 7.4 High |
A vulnerability in the handling of RSA keys on devices running Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to retrieve an RSA private key. This vulnerability is due to a logic error when the RSA key is stored in memory on a hardware platform that performs hardware-based cryptography. An attacker could exploit this vulnerability by using a Lenstra side-channel attack against the targeted device. A successful exploit could allow the attacker to retrieve the RSA private key. The following conditions may be observed on an affected device: This vulnerability will apply to approximately 5 percent of the RSA keys on a device that is running a vulnerable release of Cisco ASA Software or Cisco FTD Software; not all RSA keys are expected to be affected due to mathematical calculations applied to the RSA key. The RSA key could be valid but have specific characteristics that make it vulnerable to the potential leak of the RSA private key. If an attacker obtains the RSA private key, they could use the key to impersonate a device that is running Cisco ASA Software or Cisco FTD Software or to decrypt the device traffic. See the Indicators of Compromise section for more information on the detection of this type of RSA key. The RSA key could be malformed and invalid. A malformed RSA key is not functional, and a TLS client connection to a device that is running Cisco ASA Software or Cisco FTD Software that uses the malformed RSA key will result in a TLS signature failure, which means a vulnerable software release created an invalid RSA signature that failed verification. If an attacker obtains the RSA private key, they could use the key to impersonate a device that is running Cisco ASA Software or Cisco FTD Software or to decrypt the device traffic. | ||||
CVE-2022-20854 | 1 Cisco | 2 Firepower Management Center, Firepower Threat Defense | 2024-11-21 | 7.5 High |
A vulnerability in the processing of SSH connections of Cisco Firepower Management Center (FMC) and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to improper error handling when an SSH session fails to be established. An attacker could exploit this vulnerability by sending a high rate of crafted SSH connections to the instance. A successful exploit could allow the attacker to cause resource exhaustion, resulting in a reboot on the affected device. | ||||
CVE-2022-20826 | 1 Cisco | 7 Adaptive Security Appliance Software, Firepower Threat Defense, Secure Firewall 3105 and 4 more | 2024-11-21 | 6.4 Medium |
A vulnerability in the secure boot implementation of Cisco Secure Firewalls 3100 Series that are running Cisco Adaptive Security Appliance (ASA) Software or Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated attacker with physical access to the device to bypass the secure boot functionality. This vulnerability is due to a logic error in the boot process. An attacker could exploit this vulnerability by injecting malicious code into a specific memory location during the boot process of an affected device. A successful exploit could allow the attacker to execute persistent code at boot time and break the chain of trust. | ||||
CVE-2022-20795 | 1 Cisco | 29 Adaptive Security Appliance, Adaptive Security Appliance Software, Asa 5505 and 26 more | 2024-11-21 | 5.8 Medium |
A vulnerability in the implementation of the Datagram TLS (DTLS) protocol in Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause high CPU utilization, resulting in a denial of service (DoS) condition. This vulnerability is due to suboptimal processing that occurs when establishing a DTLS tunnel as part of an AnyConnect SSL VPN connection. An attacker could exploit this vulnerability by sending a steady stream of crafted DTLS traffic to an affected device. A successful exploit could allow the attacker to exhaust resources on the affected VPN headend device. This could cause existing DTLS tunnels to stop passing traffic and prevent new DTLS tunnels from establishing, resulting in a DoS condition. Note: When the attack traffic stops, the device recovers gracefully. | ||||
CVE-2022-20767 | 1 Cisco | 1 Firepower Threat Defense | 2024-11-21 | 8.6 High |
A vulnerability in the Snort rule evaluation function of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to improper handling of the DNS reputation enforcement rule. An attacker could exploit this vulnerability by sending crafted UDP packets through an affected device to force a buildup of UDP connections. A successful exploit could allow the attacker to cause traffic that is going through the affected device to be dropped, resulting in a DoS condition. Note: This vulnerability only affects Cisco FTD devices that are running Snort 3. | ||||
CVE-2022-20760 | 1 Cisco | 2 Adaptive Security Appliance Software, Firepower Threat Defense | 2024-11-21 | 8.6 High |
A vulnerability in the DNS inspection handler of Cisco Adaptive Security Appliance (ASA) Software and Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service condition (DoS) on an affected device. This vulnerability is due to a lack of proper processing of incoming requests. An attacker could exploit this vulnerability by sending crafted DNS requests at a high rate to an affected device. A successful exploit could allow the attacker to cause the device to stop responding, resulting in a DoS condition. | ||||
CVE-2022-20759 | 1 Cisco | 2 Adaptive Security Appliance Software, Firepower Threat Defense | 2024-11-21 | 8.8 High |
A vulnerability in the web services interface for remote access VPN features of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, but unprivileged, remote attacker to elevate privileges to level 15. This vulnerability is due to improper separation of authentication and authorization scopes. An attacker could exploit this vulnerability by sending crafted HTTPS messages to the web services interface of an affected device. A successful exploit could allow the attacker to gain privilege level 15 access to the web management interface of the device. This includes privilege level 15 access to the device using management tools like the Cisco Adaptive Security Device Manager (ASDM) or the Cisco Security Manager (CSM). Note: With Cisco FTD Software, the impact is lower than the CVSS score suggests because the affected web management interface allows for read access only. | ||||
CVE-2022-20757 | 1 Cisco | 1 Firepower Threat Defense | 2024-11-21 | 8.6 High |
A vulnerability in the connection handling function in Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to improper traffic handling when platform limits are reached. An attacker could exploit this vulnerability by sending a high rate of UDP traffic through an affected device. A successful exploit could allow the attacker to cause all new, incoming connections to be dropped, resulting in a DoS condition. | ||||
CVE-2022-20751 | 1 Cisco | 23 Firepower 1000, Firepower 1010, Firepower 1020 and 20 more | 2024-11-21 | 8.6 High |
A vulnerability in the Snort detection engine integration for Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause unlimited memory consumption, which could lead to a denial of service (DoS) condition on an affected device. This vulnerability is due to insufficient memory management for certain Snort events. An attacker could exploit this vulnerability by sending a series of crafted IP packets that would generate specific Snort events on an affected device. A sustained attack could cause an out of memory condition on the affected device. A successful exploit could allow the attacker to interrupt all traffic flowing through the affected device. In some circumstances, the attacker may be able to cause the device to reload, resulting in a DoS condition. | ||||
CVE-2022-20748 | 1 Cisco | 1 Firepower Threat Defense | 2024-11-21 | 5.3 Medium |
A vulnerability in the local malware analysis process of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on the affected device. This vulnerability is due to insufficient error handling in the local malware analysis process of an affected device. An attacker could exploit this vulnerability by sending a crafted file through the device. A successful exploit could allow the attacker to cause the local malware analysis process to crash, which could result in a DoS condition. Notes: Manual intervention may be required to recover from this situation. Malware cloud lookup and dynamic analysis will not be impacted. | ||||
CVE-2022-20746 | 1 Cisco | 1 Firepower Threat Defense | 2024-11-21 | 8.6 High |
A vulnerability in the TCP proxy functionality of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to trigger a denial of service (DoS) condition. This vulnerability is due to improper handling of TCP flows. An attacker could exploit this vulnerability by sending a crafted stream of TCP traffic through an affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition. | ||||
CVE-2022-20745 | 1 Cisco | 2 Adaptive Security Appliance Software, Firepower Threat Defense | 2024-11-21 | 8.6 High |
A vulnerability in the web services interface for remote access VPN features of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition. This vulnerability is due to improper input validation when parsing HTTPS requests. An attacker could exploit this vulnerability by sending a crafted HTTPS request to an affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition. | ||||
CVE-2022-20742 | 1 Cisco | 2 Adaptive Security Appliance Software, Firepower Threat Defense | 2024-11-21 | 7.4 High |
A vulnerability in an IPsec VPN library of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to read or modify data within an IPsec IKEv2 VPN tunnel. This vulnerability is due to an improper implementation of Galois/Counter Mode (GCM) ciphers. An attacker in a man-in-the-middle position could exploit this vulnerability by intercepting a sufficient number of encrypted messages across an affected IPsec IKEv2 VPN tunnel and then using cryptanalytic techniques to break the encryption. A successful exploit could allow the attacker to decrypt, read, modify, and re-encrypt data that is transmitted across an affected IPsec IKEv2 VPN tunnel. | ||||
CVE-2022-20730 | 1 Cisco | 1 Firepower Threat Defense | 2024-11-21 | 4 Medium |
A vulnerability in the Security Intelligence feed feature of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass the Security Intelligence DNS feed. This vulnerability is due to incorrect feed update processing. An attacker could exploit this vulnerability by sending traffic through an affected device that should be blocked by the affected device. A successful exploit could allow the attacker to bypass device controls and successfully send traffic to devices that are expected to be protected by the affected device. | ||||
CVE-2022-20729 | 1 Cisco | 1 Firepower Threat Defense | 2024-11-21 | 4.4 Medium |
A vulnerability in CLI of Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, local attacker to inject XML into the command parser. This vulnerability is due to insufficient input validation. An attacker could exploit this vulnerability by including crafted input in commands. A successful exploit could allow the attacker to inject XML into the command parser, which could result in unexpected processing of the command and unexpected command output. |