| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtw89: 8852a: rfk: fix div 0 exception
The DPK is a kind of RF calibration whose algorithm is to fine tune
parameters and calibrate, and check the result. If the result isn't good
enough, it could adjust parameters and try again.
This issue is to read and show the result, but it could be a negative
calibration result that causes divisor 0 and core dump. So, fix it by
phy_div() that does division only if divisor isn't zero; otherwise,
zero is adopted.
divide error: 0000 [#1] PREEMPT SMP NOPTI
CPU: 1 PID: 728 Comm: wpa_supplicant Not tainted 5.10.114-16019-g462a1661811a #1 <HASH:d024 28>
RIP: 0010:rtw8852a_dpk+0x14ae/0x288f [rtw89_core]
RSP: 0018:ffffa9bb412a7520 EFLAGS: 00010246
RAX: 0000000000000000 RBX: 0000000000000000 RCX: 0000000000000000
RDX: 0000000000000000 RSI: 00000000000180fc RDI: ffffa141d01023c0
RBP: ffffa9bb412a76a0 R08: 0000000000001319 R09: 00000000ffffff92
R10: ffffffffc0292de3 R11: ffffffffc00d2f51 R12: 0000000000000000
R13: ffffa141d01023c0 R14: ffffffffc0290250 R15: ffffa141d0102638
FS: 00007fa99f5c2740(0000) GS:ffffa142e5e80000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000000013e8e010 CR3: 0000000110d2c000 CR4: 0000000000750ee0
PKRU: 55555554
Call Trace:
rtw89_core_sta_add+0x95/0x9c [rtw89_core <HASH:d239 29>]
rtw89_ops_sta_state+0x5d/0x108 [rtw89_core <HASH:d239 29>]
drv_sta_state+0x115/0x66f [mac80211 <HASH:81fe 30>]
sta_info_insert_rcu+0x45c/0x713 [mac80211 <HASH:81fe 30>]
sta_info_insert+0xf/0x1b [mac80211 <HASH:81fe 30>]
ieee80211_prep_connection+0x9d6/0xb0c [mac80211 <HASH:81fe 30>]
ieee80211_mgd_auth+0x2aa/0x352 [mac80211 <HASH:81fe 30>]
cfg80211_mlme_auth+0x160/0x1f6 [cfg80211 <HASH:00cd 31>]
nl80211_authenticate+0x2e5/0x306 [cfg80211 <HASH:00cd 31>]
genl_rcv_msg+0x371/0x3a1
? nl80211_stop_sched_scan+0xe5/0xe5 [cfg80211 <HASH:00cd 31>]
? genl_rcv+0x36/0x36
netlink_rcv_skb+0x8a/0xf9
genl_rcv+0x28/0x36
netlink_unicast+0x27b/0x3a0
netlink_sendmsg+0x2aa/0x469
sock_sendmsg_nosec+0x49/0x4d
____sys_sendmsg+0xe5/0x213
__sys_sendmsg+0xec/0x157
? syscall_enter_from_user_mode+0xd7/0x116
do_syscall_64+0x43/0x55
entry_SYSCALL_64_after_hwframe+0x44/0xa9
RIP: 0033:0x7fa99f6e689b |
| In the Linux kernel, the following vulnerability has been resolved:
rcutorture: Fix ksoftirqd boosting timing and iteration
The RCU priority boosting can fail in two situations:
1) If (nr_cpus= > maxcpus=), which means if the total number of CPUs
is higher than those brought online at boot, then torture_onoff() may
later bring up CPUs that weren't online on boot. Now since rcutorture
initialization only boosts the ksoftirqds of the CPUs that have been
set online on boot, the CPUs later set online by torture_onoff won't
benefit from the boost, making RCU priority boosting fail.
2) The ksoftirqd kthreads are boosted after the creation of
rcu_torture_boost() kthreads, which opens a window large enough for these
rcu_torture_boost() kthreads to wait (despite running at FIFO priority)
for ksoftirqds that are still running at SCHED_NORMAL priority.
The issues can trigger for example with:
./kvm.sh --configs TREE01 --kconfig "CONFIG_RCU_BOOST=y"
[ 34.968561] rcu-torture: !!!
[ 34.968627] ------------[ cut here ]------------
[ 35.014054] WARNING: CPU: 4 PID: 114 at kernel/rcu/rcutorture.c:1979 rcu_torture_stats_print+0x5ad/0x610
[ 35.052043] Modules linked in:
[ 35.069138] CPU: 4 PID: 114 Comm: rcu_torture_sta Not tainted 5.18.0-rc1 #1
[ 35.096424] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.14.0-0-g155821a-rebuilt.opensuse.org 04/01/2014
[ 35.154570] RIP: 0010:rcu_torture_stats_print+0x5ad/0x610
[ 35.198527] Code: 63 1b 02 00 74 02 0f 0b 48 83 3d 35 63 1b 02 00 74 02 0f 0b 48 83 3d 21 63 1b 02 00 74 02 0f 0b 48 83 3d 0d 63 1b 02 00 74 02 <0f> 0b 83 eb 01 0f 8e ba fc ff ff 0f 0b e9 b3 fc ff f82
[ 37.251049] RSP: 0000:ffffa92a0050bdf8 EFLAGS: 00010202
[ 37.277320] rcu: De-offloading 8
[ 37.290367] RAX: 0000000000000000 RBX: 0000000000000001 RCX: 0000000000000001
[ 37.290387] RDX: 0000000000000000 RSI: 00000000ffffbfff RDI: 00000000ffffffff
[ 37.290398] RBP: 000000000000007b R08: 0000000000000000 R09: c0000000ffffbfff
[ 37.290407] R10: 000000000000002a R11: ffffa92a0050bc18 R12: ffffa92a0050be20
[ 37.290417] R13: ffffa92a0050be78 R14: 0000000000000000 R15: 000000000001bea0
[ 37.290427] FS: 0000000000000000(0000) GS:ffff96045eb00000(0000) knlGS:0000000000000000
[ 37.290448] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 37.290460] CR2: 0000000000000000 CR3: 000000001dc0c000 CR4: 00000000000006e0
[ 37.290470] Call Trace:
[ 37.295049] <TASK>
[ 37.295065] ? preempt_count_add+0x63/0x90
[ 37.295095] ? _raw_spin_lock_irqsave+0x12/0x40
[ 37.295125] ? rcu_torture_stats_print+0x610/0x610
[ 37.295143] rcu_torture_stats+0x29/0x70
[ 37.295160] kthread+0xe3/0x110
[ 37.295176] ? kthread_complete_and_exit+0x20/0x20
[ 37.295193] ret_from_fork+0x22/0x30
[ 37.295218] </TASK>
Fix this with boosting the ksoftirqds kthreads from the boosting
hotplug callback itself and before the boosting kthreads are created. |
| Race condition in libssl in Mozilla Network Security Services (NSS) before 3.15.4, as used in Mozilla Firefox before 27.0, Firefox ESR 24.x before 24.3, Thunderbird before 24.3, SeaMonkey before 2.24, and other products, allows remote attackers to cause a denial of service (use-after-free) or possibly have unspecified other impact via vectors involving a resumption handshake that triggers incorrect replacement of a session ticket. |
| Mozilla Network Security Services (NSS) before 3.15.4, as used in Mozilla Firefox before 27.0, Firefox ESR 24.x before 24.3, Thunderbird before 24.3, SeaMonkey before 2.24, and other products, does not properly restrict public values in Diffie-Hellman key exchanges, which makes it easier for remote attackers to bypass cryptographic protection mechanisms in ticket handling by leveraging use of a certain value. |
| Mozilla developers and community members reported memory safety bugs present in Firefox 67 and Firefox ESR 60.7. Some of these bugs showed evidence of memory corruption and we presume that with enough effort that some of these could be exploited to run arbitrary code. This vulnerability affects Firefox ESR < 60.8, Firefox < 68, and Thunderbird < 60.8. |
| Use-after-free vulnerability in the AppendElements function in Mozilla Firefox before 37.0, Firefox ESR 31.x before 31.6, and Thunderbird before 31.6 on Linux, when the Fluendo MP3 plugin for GStreamer is used, allows remote attackers to execute arbitrary code or cause a denial of service (heap memory corruption) via a crafted MP3 file. |
| The bufferdata function in WebGL is vulnerable to a buffer overflow with specific graphics drivers on Linux. This could result in malicious content freezing a tab or triggering a potentially exploitable crash. *Note: this issue only occurs on Linux. Other operating systems are unaffected.*. This vulnerability affects Thunderbird < 60.7, Firefox < 67, and Firefox ESR < 60.7. |
| In the Linux kernel, the following vulnerability has been resolved:
net/sched: act_mirred: don't override retval if we already lost the skb
If we're redirecting the skb, and haven't called tcf_mirred_forward(),
yet, we need to tell the core to drop the skb by setting the retcode
to SHOT. If we have called tcf_mirred_forward(), however, the skb
is out of our hands and returning SHOT will lead to UaF.
Move the retval override to the error path which actually need it. |
| A use-after-free vulnerability in the Linux kernel's ipv4: igmp component can be exploited to achieve local privilege escalation.
A race condition can be exploited to cause a timer be mistakenly registered on a RCU read locked object which is freed by another thread.
We recommend upgrading past commit e2b706c691905fe78468c361aaabc719d0a496f1. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/khugepaged: fix ->anon_vma race
If an ->anon_vma is attached to the VMA, collapse_and_free_pmd() requires
it to be locked.
Page table traversal is allowed under any one of the mmap lock, the
anon_vma lock (if the VMA is associated with an anon_vma), and the
mapping lock (if the VMA is associated with a mapping); and so to be
able to remove page tables, we must hold all three of them.
retract_page_tables() bails out if an ->anon_vma is attached, but does
this check before holding the mmap lock (as the comment above the check
explains).
If we racily merged an existing ->anon_vma (shared with a child
process) from a neighboring VMA, subsequent rmap traversals on pages
belonging to the child will be able to see the page tables that we are
concurrently removing while assuming that nothing else can access them.
Repeat the ->anon_vma check once we hold the mmap lock to ensure that
there really is no concurrent page table access.
Hitting this bug causes a lockdep warning in collapse_and_free_pmd(),
in the line "lockdep_assert_held_write(&vma->anon_vma->root->rwsem)".
It can also lead to use-after-free access. |
| In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix potential deadlock when releasing mids
All release_mid() callers seem to hold a reference of @mid so there is
no need to call kref_put(&mid->refcount, __release_mid) under
@server->mid_lock spinlock. If they don't, then an use-after-free bug
would have occurred anyways.
By getting rid of such spinlock also fixes a potential deadlock as
shown below
CPU 0 CPU 1
------------------------------------------------------------------
cifs_demultiplex_thread() cifs_debug_data_proc_show()
release_mid()
spin_lock(&server->mid_lock);
spin_lock(&cifs_tcp_ses_lock)
spin_lock(&server->mid_lock)
__release_mid()
smb2_find_smb_tcon()
spin_lock(&cifs_tcp_ses_lock) *deadlock* |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Check rcu_read_lock_trace_held() before calling bpf map helpers
These three bpf_map_{lookup,update,delete}_elem() helpers are also
available for sleepable bpf program, so add the corresponding lock
assertion for sleepable bpf program, otherwise the following warning
will be reported when a sleepable bpf program manipulates bpf map under
interpreter mode (aka bpf_jit_enable=0):
WARNING: CPU: 3 PID: 4985 at kernel/bpf/helpers.c:40 ......
CPU: 3 PID: 4985 Comm: test_progs Not tainted 6.6.0+ #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) ......
RIP: 0010:bpf_map_lookup_elem+0x54/0x60
......
Call Trace:
<TASK>
? __warn+0xa5/0x240
? bpf_map_lookup_elem+0x54/0x60
? report_bug+0x1ba/0x1f0
? handle_bug+0x40/0x80
? exc_invalid_op+0x18/0x50
? asm_exc_invalid_op+0x1b/0x20
? __pfx_bpf_map_lookup_elem+0x10/0x10
? rcu_lockdep_current_cpu_online+0x65/0xb0
? rcu_is_watching+0x23/0x50
? bpf_map_lookup_elem+0x54/0x60
? __pfx_bpf_map_lookup_elem+0x10/0x10
___bpf_prog_run+0x513/0x3b70
__bpf_prog_run32+0x9d/0xd0
? __bpf_prog_enter_sleepable_recur+0xad/0x120
? __bpf_prog_enter_sleepable_recur+0x3e/0x120
bpf_trampoline_6442580665+0x4d/0x1000
__x64_sys_getpgid+0x5/0x30
? do_syscall_64+0x36/0xb0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
x86/srso: Add SRSO mitigation for Hygon processors
Add mitigation for the speculative return stack overflow vulnerability
which exists on Hygon processors too. |
| Integer overflow in Adobe Reader and Acrobat 9.x before 9.5.5, 10.x before 10.1.7, and 11.x before 11.0.03 allows attackers to execute arbitrary code via unspecified vectors, a different vulnerability than CVE-2013-2727. |
| A flaw was found in the Linux kernel's memory deduplication mechanism. The max page sharing of Kernel Samepage Merging (KSM), added in Linux kernel version 4.4.0-96.119, can create a side channel. When the attacker and the victim share the same host and the default setting of KSM is "max page sharing=256", it is possible for the attacker to time the unmap to merge with the victim's page. The unmapping time depends on whether it merges with the victim's page and additional physical pages are created beyond the KSM's "max page share". Through these operations, the attacker can leak the victim's page. |
| A null pointer dereference vulnerability was found in ath10k_wmi_tlv_op_pull_mgmt_tx_compl_ev() in drivers/net/wireless/ath/ath10k/wmi-tlv.c in the Linux kernel. This issue could be exploited to trigger a denial of service. |
| A null pointer dereference vulnerability was found in dpll_pin_parent_pin_set() in drivers/dpll/dpll_netlink.c in the Digital Phase Locked Loop (DPLL) subsystem in the Linux kernel. This issue could be exploited to trigger a denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: cdns3: fix random warning message when driver load
Warning log:
[ 4.141392] Unexpected gfp: 0x4 (GFP_DMA32). Fixing up to gfp: 0xa20 (GFP_ATOMIC). Fix your code!
[ 4.150340] CPU: 1 PID: 175 Comm: 1-0050 Not tainted 5.15.5-00039-g2fd9ae1b568c #20
[ 4.158010] Hardware name: Freescale i.MX8QXP MEK (DT)
[ 4.163155] Call trace:
[ 4.165600] dump_backtrace+0x0/0x1b0
[ 4.169286] show_stack+0x18/0x68
[ 4.172611] dump_stack_lvl+0x68/0x84
[ 4.176286] dump_stack+0x18/0x34
[ 4.179613] kmalloc_fix_flags+0x60/0x88
[ 4.183550] new_slab+0x334/0x370
[ 4.186878] ___slab_alloc.part.108+0x4d4/0x748
[ 4.191419] __slab_alloc.isra.109+0x30/0x78
[ 4.195702] kmem_cache_alloc+0x40c/0x420
[ 4.199725] dma_pool_alloc+0xac/0x1f8
[ 4.203486] cdns3_allocate_trb_pool+0xb4/0xd0
pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
{
...
page = kmalloc(sizeof(*page), mem_flags);
page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
&page->dma, mem_flags);
...
}
kmalloc was called with mem_flags, which is passed down in
cdns3_allocate_trb_pool() and have GFP_DMA32 flags.
kmall_fix_flags() report warning.
GFP_DMA32 is not useful at all. dma_alloc_coherent() will handle
DMA memory region correctly by pool->dev. GFP_DMA32 can be removed
safely. |
| A flaw was found in rsync which could be triggered when rsync compares file checksums. This flaw allows an attacker to manipulate the checksum length (s2length) to cause a comparison between a checksum and uninitialized memory and leak one byte of uninitialized stack data at a time. |
| An out-of-bounds read vulnerability was found in Netfilter Connection Tracking (conntrack) in the Linux kernel. This flaw allows a remote user to disclose sensitive information via the DCCP protocol. |