Filtered by vendor Cisco
Subscriptions
Filtered by product Nexus 92304qc
Subscriptions
Total
87 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2020-3394 | 1 Cisco | 65 Nexus 3016, Nexus 3048, Nexus 3064 and 62 more | 2024-11-21 | 7.8 High |
A vulnerability in the Enable Secret feature of Cisco Nexus 3000 Series Switches and Cisco Nexus 9000 Series Switches in standalone NX-OS mode could allow an authenticated, local attacker to issue the enable command and get full administrative privileges. To exploit this vulnerability, the attacker would need to have valid credentials for the affected device. The vulnerability is due to a logic error in the implementation of the enable command. An attacker could exploit this vulnerability by logging in to the device and issuing the enable command. A successful exploit could allow the attacker to gain full administrative privileges without using the enable password. Note: The Enable Secret feature is disabled by default. | ||||
CVE-2020-3338 | 1 Cisco | 67 Nexus 3016, Nexus 3048, Nexus 3064 and 64 more | 2024-11-21 | 7.5 High |
A vulnerability in the Protocol Independent Multicast (PIM) feature for IPv6 networks (PIM6) of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to improper error handling when processing inbound PIM6 packets. An attacker could exploit this vulnerability by sending multiple crafted PIM6 packets to an affected device. A successful exploit could allow the attacker to cause the PIM6 application to leak system memory. Over time, this memory leak could cause the PIM6 application to stop processing legitimate PIM6 traffic, leading to a DoS condition on the affected device. | ||||
CVE-2020-3174 | 1 Cisco | 80 Mds 9132t, Mds 9148s, Mds 9148t and 77 more | 2024-11-21 | 4.7 Medium |
A vulnerability in the anycast gateway feature of Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause a device to learn invalid Address Resolution Protocol (ARP) entries. The ARP entries are for nonlocal IP addresses for the subnet. The vulnerability is due to improper validation of a received gratuitous ARP (GARP) request. An attacker could exploit this vulnerability by sending a malicious GARP packet on the local subnet to cause the ARP table on the device to become corrupted. A successful exploit could allow the attacker to populate the ARP table with incorrect entries, which could lead to traffic disruptions. | ||||
CVE-2020-3172 | 1 Cisco | 107 Firepower 4110, Firepower 4115, Firepower 4120 and 104 more | 2024-11-21 | 8.8 High |
A vulnerability in the Cisco Discovery Protocol feature of Cisco FXOS Software and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to execute arbitrary code as root or cause a denial of service (DoS) condition on an affected device. The vulnerability exists because of insufficiently validated Cisco Discovery Protocol packet headers. An attacker could exploit this vulnerability by sending a crafted Cisco Discovery Protocol packet to a Layer 2-adjacent affected device. A successful exploit could allow the attacker to cause a buffer overflow that could allow the attacker to execute arbitrary code as root or cause a DoS condition on the affected device. Note: Cisco Discovery Protocol is a Layer 2 protocol. To exploit this vulnerability, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent). Note: This vulnerability is different from the following Cisco FXOS and NX-OS Software Cisco Discovery Protocol vulnerabilities that Cisco announced on Feb. 5, 2020: Cisco FXOS, IOS XR, and NX-OS Software Cisco Discovery Protocol Denial of Service Vulnerability and Cisco NX-OS Software Cisco Discovery Protocol Remote Code Execution Vulnerability. | ||||
CVE-2020-3165 | 1 Cisco | 65 Nexus 3016, Nexus 3048, Nexus 3064 and 62 more | 2024-11-21 | 8.2 High |
A vulnerability in the implementation of Border Gateway Protocol (BGP) Message Digest 5 (MD5) authentication in Cisco NX-OS Software could allow an unauthenticated, remote attacker to bypass MD5 authentication and establish a BGP connection with the device. The vulnerability occurs because the BGP MD5 authentication is bypassed if the peer does not have MD5 authentication configured, the NX-OS device does have BGP MD5 authentication configured, and the NX-OS BGP virtual routing and forwarding (VRF) name is configured to be greater than 19 characters. An attacker could exploit this vulnerability by attempting to establish a BGP session with the NX-OS peer. A successful exploit could allow the attacker to establish a BGP session with the NX-OS device without MD5 authentication. The Cisco implementation of the BGP protocol accepts incoming BGP traffic only from explicitly configured peers. To exploit this vulnerability, an attacker must send the malicious packets over a TCP connection that appears to come from a trusted BGP peer. To do so, the attacker must obtain information about the BGP peers in the affected system’s trusted network. | ||||
CVE-2020-3120 | 1 Cisco | 144 Asr 9000v, Asr 9001, Asr 9006 and 141 more | 2024-11-21 | 6.5 Medium |
A vulnerability in the Cisco Discovery Protocol implementation for Cisco FXOS Software, Cisco IOS XR Software, and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause a reload of an affected device, resulting in a denial of service (DoS) condition. The vulnerability is due to a missing check when the affected software processes Cisco Discovery Protocol messages. An attacker could exploit this vulnerability by sending a malicious Cisco Discovery Protocol packet to an affected device. A successful exploit could allow the attacker to exhaust system memory, causing the device to reload. Cisco Discovery Protocol is a Layer 2 protocol. To exploit this vulnerability, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent). | ||||
CVE-2020-3119 | 1 Cisco | 83 Nexus 3016, Nexus 3048, Nexus 3064 and 80 more | 2024-11-21 | 8.8 High |
A vulnerability in the Cisco Discovery Protocol implementation for Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to execute arbitrary code or cause a reload on an affected device. The vulnerability exists because the Cisco Discovery Protocol parser does not properly validate input for certain fields in a Cisco Discovery Protocol message. An attacker could exploit this vulnerability by sending a malicious Cisco Discovery Protocol packet to an affected device. An successful exploit could allow the attacker to cause a stack overflow, which could allow the attacker to execute arbitrary code with administrative privileges on an affected device. Cisco Discovery Protocol is a Layer 2 protocol. To exploit this vulnerability, an attacker must be in the same broadcast domain as the affected device (Layer 2 adjacent). | ||||
CVE-2020-10136 | 4 Cisco, Digi, Hp and 1 more | 63 Nexus 1000v, Nexus 1000ve, Nexus 3016 and 60 more | 2024-11-21 | 5.3 Medium |
IP-in-IP protocol specifies IP Encapsulation within IP standard (RFC 2003, STD 1) that decapsulate and route IP-in-IP traffic is vulnerable to spoofing, access-control bypass and other unexpected behavior due to the lack of validation to verify network packets before decapsulation and routing. | ||||
CVE-2019-1969 | 1 Cisco | 65 Nexus 3016, Nexus 3048, Nexus 3064 and 62 more | 2024-11-21 | 5.3 Medium |
A vulnerability in the implementation of the Simple Network Management Protocol (SNMP) Access Control List (ACL) feature of Cisco NX-OS Software could allow an unauthenticated, remote attacker to perform SNMP polling of an affected device, even if it is configured to deny SNMP traffic. The vulnerability is due to an incorrect length check when the configured ACL name is the maximum length, which is 32 ASCII characters. An attacker could exploit this vulnerability by performing SNMP polling of an affected device. A successful exploit could allow the attacker to perform SNMP polling that should have been denied. The attacker has no control of the configuration of the SNMP ACL name. | ||||
CVE-2019-1968 | 1 Cisco | 92 Mds 9000, Mds 9100, Mds 9140 and 89 more | 2024-11-21 | 7.5 High |
A vulnerability in the NX-API feature of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause an NX-API system process to unexpectedly restart. The vulnerability is due to incorrect validation of the HTTP header of a request that is sent to the NX-API. An attacker could exploit this vulnerability by sending a crafted HTTP request to the NX-API on an affected device. A successful exploit could allow the attacker to cause a denial of service (DoS) condition in the NX-API service; however, the NX-OS device itself would still be available and passing network traffic. Note: The NX-API feature is disabled by default. | ||||
CVE-2019-1967 | 1 Cisco | 92 Mds 9000, Mds 9100, Mds 9140 and 89 more | 2024-11-21 | 7.5 High |
A vulnerability in the Network Time Protocol (NTP) feature of Cisco NX-OS Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device. The vulnerability is due to excessive use of system resources when the affected device is logging a drop action for received MODE_PRIVATE (Mode 7) NTP packets. An attacker could exploit this vulnerability by flooding the device with a steady stream of Mode 7 NTP packets. A successful exploit could allow the attacker to cause high CPU and memory usage on the affected device, which could cause internal system processes to restart or cause the affected device to unexpectedly reload. Note: The NTP feature is enabled by default. | ||||
CVE-2019-1782 | 1 Cisco | 97 Firepower 4110, Firepower 4120, Firepower 4140 and 94 more | 2024-11-21 | 6.7 Medium |
A vulnerability in the CLI of Cisco FXOS Software and Cisco NX-OS Software could allow an authenticated, local attacker to execute arbitrary commands on the underlying operating system of an affected device. This vulnerability is due to insufficient validation of arguments passed to certain CLI commands. An attacker could exploit this vulnerability by including malicious input as the argument of an affected command. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with elevated privileges. An attacker would need administrator credentials to exploit this vulnerability. | ||||
CVE-2019-1781 | 1 Cisco | 97 Firepower 4110, Firepower 4120, Firepower 4140 and 94 more | 2024-11-21 | 6.7 Medium |
A vulnerability in the CLI of Cisco FXOS Software and Cisco NX-OS Software could allow an authenticated, local attacker to execute arbitrary commands on the underlying operating system of an affected device. This vulnerability is due to insufficient validation of arguments passed to certain CLI commands. An attacker could exploit this vulnerability by including malicious input as the argument of an affected command. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with elevated privileges. An attacker would need administrator credentials to exploit this vulnerability. | ||||
CVE-2019-1778 | 1 Cisco | 67 N9k-c9504-fm-r, N9k-c9508-fm-r, N9k-x96136yc-r and 64 more | 2024-11-21 | 6.7 Medium |
A vulnerability in the CLI of Cisco NX-OS Software could allow an authenticated, local attacker to execute arbitrary commands on the underlying Linux operating system with the privilege level of root. The vulnerability is due to insufficient validation of arguments passed to a specific CLI command on the affected device. An attacker could exploit this vulnerability by including malicious input as the argument of an affected command. A successful exploit could allow the attacker to execute arbitrary commands on the underlying Linux operating system with elevated privileges. An attacker would need valid administrator credentials to exploit this vulnerability. | ||||
CVE-2019-1769 | 1 Cisco | 67 N9k-c9504-fm-r, N9k-c9508-fm-r, N9k-x96136yc-r and 64 more | 2024-11-21 | 6.7 Medium |
A vulnerability in the CLI of Cisco NX-OS Software could allow an authenticated, local attacker with administrator credentials to execute arbitrary commands on the underlying Linux operating system of an attached line card with the privilege level of root. The vulnerability is due to insufficient validation of arguments passed to a specific CLI command on the affected device. An attacker could exploit this vulnerability by including malicious input as the argument of an affected command. A successful exploit could allow the attacker to execute arbitrary commands on the underlying Linux operating system of an attached line card with elevated privileges. An attacker would need valid administrator credentials to exploit this vulnerability. | ||||
CVE-2019-1768 | 1 Cisco | 65 Nexus 3016, Nexus 3048, Nexus 3064 and 62 more | 2024-11-21 | 6.7 Medium |
A vulnerability in the implementation of a specific CLI command for Cisco NX-OS Software could allow an authenticated, local attacker with administrator credentials to cause a buffer overflow condition or perform command injection. This could allow the attacker to execute arbitrary commands with elevated privileges on the underlying operating system of an affected device. The vulnerability is due to insufficient validation of arguments passed to a certain CLI command. An attacker could exploit this vulnerability by including malicious input as the argument of the affected CLI command. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with root privileges. An attacker would need valid administrator credentials to exploit these vulnerabilities. | ||||
CVE-2019-1767 | 1 Cisco | 65 Nexus 3016, Nexus 3048, Nexus 3064 and 62 more | 2024-11-21 | 6.7 Medium |
A vulnerability in the implementation of a specific CLI command for Cisco NX-OS Software could allow an authenticated, local attacker with administrator credentials to cause a buffer overflow condition or perform command injection. This could allow the attacker to execute arbitrary commands with elevated privileges on the underlying operating system of an affected device. The vulnerability is due to insufficient validation of arguments passed to a certain CLI command. An attacker could exploit this vulnerability by including malicious input as the argument of the affected CLI command. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with root privileges. An attacker would need valid administrator credentials to exploit these vulnerabilities. NX-OS versions prior to 8.3(1) are affected. | ||||
CVE-2019-1615 | 1 Cisco | 44 9432pq, 9536pq, 9636pq and 41 more | 2024-11-21 | N/A |
A vulnerability in the Image Signature Verification feature of Cisco NX-OS Software could allow an authenticated, local attacker with administrator-level credentials to install a malicious software image on an affected device. The vulnerability is due to improper verification of digital signatures for software images. An attacker could exploit this vulnerability by loading an unsigned software image on an affected device. A successful exploit could allow the attacker to boot a malicious software image. Note: The fix for this vulnerability requires a BIOS upgrade as part of the software upgrade. For additional information, see the Details section of this advisory. Nexus 3000 Series Switches are affected running software versions prior to 7.0(3)I7(5). Nexus 9000 Series Fabric Switches in ACI Mode are affected running software versions prior to 13.2(1l). Nexus 9000 Series Switches in Standalone NX-OS Mode are affected running software versions prior to 7.0(3)I7(5). Nexus 9500 R-Series Line Cards and Fabric Modules are affected running software versions prior to 7.0(3)F3(5). | ||||
CVE-2019-1592 | 1 Cisco | 28 Nexus 9000, Nexus 92160yc-x, Nexus 92300yc and 25 more | 2024-11-21 | 7.8 High |
A vulnerability in the background operations functionality of Cisco Nexus 9000 Series Application Centric Infrastructure (ACI) Mode Switch Software could allow an authenticated, local attacker to gain elevated privileges as root on an affected device. The vulnerability is due to insufficient validation of user-supplied files on an affected device. An attacker could exploit this vulnerability by logging in to the CLI of the affected device and creating a crafted file in a specific directory on the filesystem. A successful exploit could allow the attacker to execute arbitrary operating system commands as root on an affected device. | ||||
CVE-2019-1590 | 1 Cisco | 28 Nexus 9000, Nexus 92160yc-x, Nexus 92300yc and 25 more | 2024-11-21 | N/A |
A vulnerability in the Transport Layer Security (TLS) certificate validation functionality of Cisco Nexus 9000 Series Application Centric Infrastructure (ACI) Mode Switch Software could allow an unauthenticated, remote attacker to perform insecure TLS client authentication on an affected device. The vulnerability is due to insufficient TLS client certificate validations for certificates sent between the various components of an ACI fabric. An attacker who has possession of a certificate that is trusted by the Cisco Manufacturing CA and the corresponding private key could exploit this vulnerability by presenting a valid certificate while attempting to connect to the targeted device. An exploit could allow the attacker to gain full control of all other components within the ACI fabric of an affected device. |