CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211_hwsim: Fix possible NULL dereference
In a call to mac80211_hwsim_select_tx_link() the sta pointer might
be NULL, thus need to check that it is not NULL before accessing it. |
In the Linux kernel, the following vulnerability has been resolved:
KVM: nSVM: Load L1's TSC multiplier based on L1 state, not L2 state
When emulating nested VM-Exit, load L1's TSC multiplier if L1's desired
ratio doesn't match the current ratio, not if the ratio L1 is using for
L2 diverges from the default. Functionally, the end result is the same
as KVM will run L2 with L1's multiplier if L2's multiplier is the default,
i.e. checking that L1's multiplier is loaded is equivalent to checking if
L2 has a non-default multiplier.
However, the assertion that TSC scaling is exposed to L1 is flawed, as
userspace can trigger the WARN at will by writing the MSR and then
updating guest CPUID to hide the feature (modifying guest CPUID is
allowed anytime before KVM_RUN). E.g. hacking KVM's state_test
selftest to do
vcpu_set_msr(vcpu, MSR_AMD64_TSC_RATIO, 0);
vcpu_clear_cpuid_feature(vcpu, X86_FEATURE_TSCRATEMSR);
after restoring state in a new VM+vCPU yields an endless supply of:
------------[ cut here ]------------
WARNING: CPU: 10 PID: 206939 at arch/x86/kvm/svm/nested.c:1105
nested_svm_vmexit+0x6af/0x720 [kvm_amd]
Call Trace:
nested_svm_exit_handled+0x102/0x1f0 [kvm_amd]
svm_handle_exit+0xb9/0x180 [kvm_amd]
kvm_arch_vcpu_ioctl_run+0x1eab/0x2570 [kvm]
kvm_vcpu_ioctl+0x4c9/0x5b0 [kvm]
? trace_hardirqs_off+0x4d/0xa0
__se_sys_ioctl+0x7a/0xc0
__x64_sys_ioctl+0x21/0x30
do_syscall_64+0x41/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
Unlike the nested VMRUN path, hoisting the svm->tsc_scaling_enabled check
into the if-statement is wrong as KVM needs to ensure L1's multiplier is
loaded in the above scenario. Alternatively, the WARN_ON() could simply
be deleted, but that would make KVM's behavior even more subtle, e.g. it's
not immediately obvious why it's safe to write MSR_AMD64_TSC_RATIO when
checking only tsc_ratio_msr. |
In the Linux kernel, the following vulnerability has been resolved:
ublk: fail to recover device if queue setup is interrupted
In ublk_ctrl_end_recovery(), if wait_for_completion_interruptible() is
interrupted by signal, queues aren't setup successfully yet, so we
have to fail UBLK_CMD_END_USER_RECOVERY, otherwise kernel oops can be
triggered. |
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (pmbus_core) Fix NULL pointer dereference
Pass i2c_client to _pmbus_is_enabled to drop the assumption
that a regulator device is passed in.
This will fix the issue of a NULL pointer dereference when called from
_pmbus_get_flags. |
In the Linux kernel, the following vulnerability has been resolved:
KVM: s390/diag: fix racy access of physical cpu number in diag 9c handler
We do check for target CPU == -1, but this might change at the time we
are going to use it. Hold the physical target CPU in a local variable to
avoid out-of-bound accesses to the cpu arrays. |
In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix data-races around user->unix_inflight.
user->unix_inflight is changed under spin_lock(unix_gc_lock),
but too_many_unix_fds() reads it locklessly.
Let's annotate the write/read accesses to user->unix_inflight.
BUG: KCSAN: data-race in unix_attach_fds / unix_inflight
write to 0xffffffff8546f2d0 of 8 bytes by task 44798 on cpu 1:
unix_inflight+0x157/0x180 net/unix/scm.c:66
unix_attach_fds+0x147/0x1e0 net/unix/scm.c:123
unix_scm_to_skb net/unix/af_unix.c:1827 [inline]
unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1950
unix_seqpacket_sendmsg net/unix/af_unix.c:2308 [inline]
unix_seqpacket_sendmsg+0xba/0x130 net/unix/af_unix.c:2292
sock_sendmsg_nosec net/socket.c:725 [inline]
sock_sendmsg+0x148/0x160 net/socket.c:748
____sys_sendmsg+0x4e4/0x610 net/socket.c:2494
___sys_sendmsg+0xc6/0x140 net/socket.c:2548
__sys_sendmsg+0x94/0x140 net/socket.c:2577
__do_sys_sendmsg net/socket.c:2586 [inline]
__se_sys_sendmsg net/socket.c:2584 [inline]
__x64_sys_sendmsg+0x45/0x50 net/socket.c:2584
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
read to 0xffffffff8546f2d0 of 8 bytes by task 44814 on cpu 0:
too_many_unix_fds net/unix/scm.c:101 [inline]
unix_attach_fds+0x54/0x1e0 net/unix/scm.c:110
unix_scm_to_skb net/unix/af_unix.c:1827 [inline]
unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1950
unix_seqpacket_sendmsg net/unix/af_unix.c:2308 [inline]
unix_seqpacket_sendmsg+0xba/0x130 net/unix/af_unix.c:2292
sock_sendmsg_nosec net/socket.c:725 [inline]
sock_sendmsg+0x148/0x160 net/socket.c:748
____sys_sendmsg+0x4e4/0x610 net/socket.c:2494
___sys_sendmsg+0xc6/0x140 net/socket.c:2548
__sys_sendmsg+0x94/0x140 net/socket.c:2577
__do_sys_sendmsg net/socket.c:2586 [inline]
__se_sys_sendmsg net/socket.c:2584 [inline]
__x64_sys_sendmsg+0x45/0x50 net/socket.c:2584
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
value changed: 0x000000000000000c -> 0x000000000000000d
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 44814 Comm: systemd-coredum Not tainted 6.4.0-11989-g6843306689af #6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mt76: mt7996: rely on mt76_connac2_mac_tx_rate_val
In order to fix a possible NULL pointer dereference in
mt7996_mac_write_txwi() of vif pointer, export
mt76_connac2_mac_tx_rate_val utility routine and reuse it
in mt7996 driver. |
In the Linux kernel, the following vulnerability has been resolved:
PM: domains: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: wraparound mbox producer index
Driver is not handling the wraparound of the mbox producer index correctly.
Currently the wraparound happens once u32 max is reached.
Bit 31 of the producer index register is special and should be set
only once for the first command. Because the producer index overflow
setting bit31 after a long time, FW goes to initialization sequence
and this causes FW hang.
Fix is to wraparound the mbox producer index once it reaches u16 max. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: x_tables: fix percpu counter block leak on error path when creating new netns
Here is the stack where we allocate percpu counter block:
+-< __alloc_percpu
+-< xt_percpu_counter_alloc
+-< find_check_entry # {arp,ip,ip6}_tables.c
+-< translate_table
And it can be leaked on this code path:
+-> ip6t_register_table
+-> translate_table # allocates percpu counter block
+-> xt_register_table # fails
there is no freeing of the counter block on xt_register_table fail.
Note: xt_percpu_counter_free should be called to free it like we do in
do_replace through cleanup_entry helper (or in __ip6t_unregister_table).
Probability of hitting this error path is low AFAICS (xt_register_table
can only return ENOMEM here, as it is not replacing anything, as we are
creating new netns, and it is hard to imagine that all previous
allocations succeeded and after that one in xt_register_table failed).
But it's worth fixing even the rare leak. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: hif_usb: clean up skbs if ath9k_hif_usb_rx_stream() fails
Syzkaller detected a memory leak of skbs in ath9k_hif_usb_rx_stream().
While processing skbs in ath9k_hif_usb_rx_stream(), the already allocated
skbs in skb_pool are not freed if ath9k_hif_usb_rx_stream() fails. If we
have an incorrect pkt_len or pkt_tag, the input skb is considered invalid
and dropped. All the associated packets already in skb_pool should be
dropped and freed. Added a comment describing this issue.
The patch also makes remain_skb NULL after being processed so that it
cannot be referenced after potential free. The initialization of hif_dev
fields which are associated with remain_skb (rx_remain_len,
rx_transfer_len and rx_pad_len) is moved after a new remain_skb is
allocated.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: mac80211: fix memory leak in ieee80211_if_add()
When register_netdevice() failed in ieee80211_if_add(), ndev->tstats
isn't released. Fix it. |
In the Linux kernel, the following vulnerability has been resolved:
ocfs2: fix memory leak in ocfs2_stack_glue_init()
ocfs2_table_header should be free in ocfs2_stack_glue_init() if
ocfs2_sysfs_init() failed, otherwise kmemleak will report memleak.
BUG: memory leak
unreferenced object 0xffff88810eeb5800 (size 128):
comm "modprobe", pid 4507, jiffies 4296182506 (age 55.888s)
hex dump (first 32 bytes):
c0 40 14 a0 ff ff ff ff 00 00 00 00 01 00 00 00 .@..............
01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<000000001e59e1cd>] __register_sysctl_table+0xca/0xef0
[<00000000c04f70f7>] 0xffffffffa0050037
[<000000001bd12912>] do_one_initcall+0xdb/0x480
[<0000000064f766c9>] do_init_module+0x1cf/0x680
[<000000002ba52db0>] load_module+0x6441/0x6f20
[<000000009772580d>] __do_sys_finit_module+0x12f/0x1c0
[<00000000380c1f22>] do_syscall_64+0x3f/0x90
[<000000004cf473bc>] entry_SYSCALL_64_after_hwframe+0x63/0xcd |
In the Linux kernel, the following vulnerability has been resolved:
qlcnic: prevent ->dcb use-after-free on qlcnic_dcb_enable() failure
adapter->dcb would get silently freed inside qlcnic_dcb_enable() in
case qlcnic_dcb_attach() would return an error, which always happens
under OOM conditions. This would lead to use-after-free because both
of the existing callers invoke qlcnic_dcb_get_info() on the obtained
pointer, which is potentially freed at that point.
Propagate errors from qlcnic_dcb_enable(), and instead free the dcb
pointer at callsite using qlcnic_dcb_free(). This also removes the now
unused qlcnic_clear_dcb_ops() helper, which was a simple wrapper around
kfree() also causing memory leaks for partially initialized dcb.
Found by Linux Verification Center (linuxtesting.org) with the SVACE
static analysis tool. |
In the Linux kernel, the following vulnerability has been resolved:
drm/i915/bios: fix a memory leak in generate_lfp_data_ptrs
When (size != 0 || ptrs->lvds_ entries != 3), the program tries to
free() the ptrs. However, the ptrs is not created by calling kzmalloc(),
but is obtained by pointer offset operation.
This may lead to memory leaks or undefined behavior.
Fix this by replacing the arguments of kfree() with ptrs_block.
(cherry picked from commit 7674cd0b7d28b952151c3df26bbfa7e07eb2b4ec) |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix delayed allocation bug in ext4_clu_mapped for bigalloc + inline
When converting files with inline data to extents, delayed allocations
made on a file system created with both the bigalloc and inline options
can result in invalid extent status cache content, incorrect reserved
cluster counts, kernel memory leaks, and potential kernel panics.
With bigalloc, the code that determines whether a block must be
delayed allocated searches the extent tree to see if that block maps
to a previously allocated cluster. If not, the block is delayed
allocated, and otherwise, it isn't. However, if the inline option is
also used, and if the file containing the block is marked as able to
store data inline, there isn't a valid extent tree associated with
the file. The current code in ext4_clu_mapped() calls
ext4_find_extent() to search the non-existent tree for a previously
allocated cluster anyway, which typically finds nothing, as desired.
However, a side effect of the search can be to cache invalid content
from the non-existent tree (garbage) in the extent status tree,
including bogus entries in the pending reservation tree.
To fix this, avoid searching the extent tree when allocating blocks
for bigalloc + inline files that are being converted from inline to
extent mapped. |
In the Linux kernel, the following vulnerability has been resolved:
mm,hugetlb: take hugetlb_lock before decrementing h->resv_huge_pages
The h->*_huge_pages counters are protected by the hugetlb_lock, but
alloc_huge_page has a corner case where it can decrement the counter
outside of the lock.
This could lead to a corrupted value of h->resv_huge_pages, which we have
observed on our systems.
Take the hugetlb_lock before decrementing h->resv_huge_pages to avoid a
potential race. |
In the Linux kernel, the following vulnerability has been resolved:
ipc: fix memory leak in init_mqueue_fs()
When setup_mq_sysctls() failed in init_mqueue_fs(), mqueue_inode_cachep is
not released. In order to fix this issue, the release path is reordered. |
In the Linux kernel, the following vulnerability has been resolved:
mtd: core: add missing of_node_get() in dynamic partitions code
This fixes unbalanced of_node_put():
[ 1.078910] 6 cmdlinepart partitions found on MTD device gpmi-nand
[ 1.085116] Creating 6 MTD partitions on "gpmi-nand":
[ 1.090181] 0x000000000000-0x000008000000 : "nandboot"
[ 1.096952] 0x000008000000-0x000009000000 : "nandfit"
[ 1.103547] 0x000009000000-0x00000b000000 : "nandkernel"
[ 1.110317] 0x00000b000000-0x00000c000000 : "nanddtb"
[ 1.115525] ------------[ cut here ]------------
[ 1.120141] refcount_t: addition on 0; use-after-free.
[ 1.125328] WARNING: CPU: 0 PID: 1 at lib/refcount.c:25 refcount_warn_saturate+0xdc/0x148
[ 1.133528] Modules linked in:
[ 1.136589] CPU: 0 PID: 1 Comm: swapper/0 Not tainted 6.0.0-rc7-next-20220930-04543-g8cf3f7
[ 1.146342] Hardware name: Freescale i.MX8DXL DDR3L EVK (DT)
[ 1.151999] pstate: 600000c5 (nZCv daIF -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 1.158965] pc : refcount_warn_saturate+0xdc/0x148
[ 1.163760] lr : refcount_warn_saturate+0xdc/0x148
[ 1.168556] sp : ffff800009ddb080
[ 1.171866] x29: ffff800009ddb080 x28: ffff800009ddb35a x27: 0000000000000002
[ 1.179015] x26: ffff8000098b06ad x25: ffffffffffffffff x24: ffff0a00ffffff05
[ 1.186165] x23: ffff00001fdf6470 x22: ffff800009ddb367 x21: 0000000000000000
[ 1.193314] x20: ffff00001fdfebe8 x19: ffff00001fdfec50 x18: ffffffffffffffff
[ 1.200464] x17: 0000000000000000 x16: 0000000000000118 x15: 0000000000000004
[ 1.207614] x14: 0000000000000fff x13: ffff800009bca248 x12: 0000000000000003
[ 1.214764] x11: 00000000ffffefff x10: c0000000ffffefff x9 : 4762cb2ccb52de00
[ 1.221914] x8 : 4762cb2ccb52de00 x7 : 205d313431303231 x6 : 312e31202020205b
[ 1.229063] x5 : ffff800009d55c1f x4 : 0000000000000001 x3 : 0000000000000000
[ 1.236213] x2 : 0000000000000000 x1 : ffff800009954be6 x0 : 000000000000002a
[ 1.243365] Call trace:
[ 1.245806] refcount_warn_saturate+0xdc/0x148
[ 1.250253] kobject_get+0x98/0x9c
[ 1.253658] of_node_get+0x20/0x34
[ 1.257072] of_fwnode_get+0x3c/0x54
[ 1.260652] fwnode_get_nth_parent+0xd8/0xf4
[ 1.264926] fwnode_full_name_string+0x3c/0xb4
[ 1.269373] device_node_string+0x498/0x5b4
[ 1.273561] pointer+0x41c/0x5d0
[ 1.276793] vsnprintf+0x4d8/0x694
[ 1.280198] vprintk_store+0x164/0x528
[ 1.283951] vprintk_emit+0x98/0x164
[ 1.287530] vprintk_default+0x44/0x6c
[ 1.291284] vprintk+0xf0/0x134
[ 1.294428] _printk+0x54/0x7c
[ 1.297486] of_node_release+0xe8/0x128
[ 1.301326] kobject_put+0x98/0xfc
[ 1.304732] of_node_put+0x1c/0x28
[ 1.308137] add_mtd_device+0x484/0x6d4
[ 1.311977] add_mtd_partitions+0xf0/0x1d0
[ 1.316078] parse_mtd_partitions+0x45c/0x518
[ 1.320439] mtd_device_parse_register+0xb0/0x274
[ 1.325147] gpmi_nand_probe+0x51c/0x650
[ 1.329074] platform_probe+0xa8/0xd0
[ 1.332740] really_probe+0x130/0x334
[ 1.336406] __driver_probe_device+0xb4/0xe0
[ 1.340681] driver_probe_device+0x3c/0x1f8
[ 1.344869] __driver_attach+0xdc/0x1a4
[ 1.348708] bus_for_each_dev+0x80/0xcc
[ 1.352548] driver_attach+0x24/0x30
[ 1.356127] bus_add_driver+0x108/0x1f4
[ 1.359967] driver_register+0x78/0x114
[ 1.363807] __platform_driver_register+0x24/0x30
[ 1.368515] gpmi_nand_driver_init+0x1c/0x28
[ 1.372798] do_one_initcall+0xbc/0x238
[ 1.376638] do_initcall_level+0x94/0xb4
[ 1.380565] do_initcalls+0x54/0x94
[ 1.384058] do_basic_setup+0x1c/0x28
[ 1.387724] kernel_init_freeable+0x110/0x188
[ 1.392084] kernel_init+0x20/0x1a0
[ 1.395578] ret_from_fork+0x10/0x20
[ 1.399157] ---[ end trace 0000000000000000 ]---
[ 1.403782] ------------[ cut here ]------------ |
In the Linux kernel, the following vulnerability has been resolved:
chardev: fix error handling in cdev_device_add()
While doing fault injection test, I got the following report:
------------[ cut here ]------------
kobject: '(null)' (0000000039956980): is not initialized, yet kobject_put() is being called.
WARNING: CPU: 3 PID: 6306 at kobject_put+0x23d/0x4e0
CPU: 3 PID: 6306 Comm: 283 Tainted: G W 6.1.0-rc2-00005-g307c1086d7c9 #1253
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.13.0-1ubuntu1.1 04/01/2014
RIP: 0010:kobject_put+0x23d/0x4e0
Call Trace:
<TASK>
cdev_device_add+0x15e/0x1b0
__iio_device_register+0x13b4/0x1af0 [industrialio]
__devm_iio_device_register+0x22/0x90 [industrialio]
max517_probe+0x3d8/0x6b4 [max517]
i2c_device_probe+0xa81/0xc00
When device_add() is injected fault and returns error, if dev->devt is not set,
cdev_add() is not called, cdev_del() is not needed. Fix this by checking dev->devt
in error path. |