Filtered by vendor Apache Subscriptions
Filtered by product Traffic Server Subscriptions
Total 69 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2019-9518 11 Apache, Apple, Canonical and 8 more 26 Traffic Server, Mac Os X, Swiftnio and 23 more 2024-11-21 7.5 High
Some HTTP/2 implementations are vulnerable to a flood of empty frames, potentially leading to a denial of service. The attacker sends a stream of frames with an empty payload and without the end-of-stream flag. These frames can be DATA, HEADERS, CONTINUATION and/or PUSH_PROMISE. The peer spends time processing each frame disproportionate to attack bandwidth. This can consume excess CPU.
CVE-2019-9517 12 Apache, Apple, Canonical and 9 more 28 Http Server, Traffic Server, Mac Os X and 25 more 2024-11-21 7.5 High
Some HTTP/2 implementations are vulnerable to unconstrained interal data buffering, potentially leading to a denial of service. The attacker opens the HTTP/2 window so the peer can send without constraint; however, they leave the TCP window closed so the peer cannot actually write (many of) the bytes on the wire. The attacker then sends a stream of requests for a large response object. Depending on how the servers queue the responses, this can consume excess memory, CPU, or both.
CVE-2019-9516 12 Apache, Apple, Canonical and 9 more 24 Traffic Server, Mac Os X, Swiftnio and 21 more 2024-11-21 6.5 Medium
Some HTTP/2 implementations are vulnerable to a header leak, potentially leading to a denial of service. The attacker sends a stream of headers with a 0-length header name and 0-length header value, optionally Huffman encoded into 1-byte or greater headers. Some implementations allocate memory for these headers and keep the allocation alive until the session dies. This can consume excess memory.
CVE-2019-9515 12 Apache, Apple, Canonical and 9 more 36 Traffic Server, Mac Os X, Swiftnio and 33 more 2024-11-21 7.5 High
Some HTTP/2 implementations are vulnerable to a settings flood, potentially leading to a denial of service. The attacker sends a stream of SETTINGS frames to the peer. Since the RFC requires that the peer reply with one acknowledgement per SETTINGS frame, an empty SETTINGS frame is almost equivalent in behavior to a ping. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2019-9514 13 Apache, Apple, Canonical and 10 more 44 Traffic Server, Mac Os X, Swiftnio and 41 more 2024-11-21 7.5 High
Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both.
CVE-2019-9513 12 Apache, Apple, Canonical and 9 more 25 Traffic Server, Mac Os X, Swiftnio and 22 more 2024-11-21 7.5 High
Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU.
CVE-2019-9512 6 Apache, Apple, Canonical and 3 more 24 Traffic Server, Mac Os X, Swiftnio and 21 more 2024-11-21 7.5 High
Some HTTP/2 implementations are vulnerable to ping floods, potentially leading to a denial of service. The attacker sends continual pings to an HTTP/2 peer, causing the peer to build an internal queue of responses. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2019-9511 12 Apache, Apple, Canonical and 9 more 29 Traffic Server, Mac Os X, Swiftnio and 26 more 2024-11-21 7.5 High
Some HTTP/2 implementations are vulnerable to window size manipulation and stream prioritization manipulation, potentially leading to a denial of service. The attacker requests a large amount of data from a specified resource over multiple streams. They manipulate window size and stream priority to force the server to queue the data in 1-byte chunks. Depending on how efficiently this data is queued, this can consume excess CPU, memory, or both.
CVE-2019-17565 2 Apache, Debian 2 Traffic Server, Debian Linux 2024-11-21 9.8 Critical
There is a vulnerability in Apache Traffic Server 6.0.0 to 6.2.3, 7.0.0 to 7.1.8, and 8.0.0 to 8.0.5 with a smuggling attack and chunked encoding. Upgrade to versions 7.1.9 and 8.0.6 or later versions.
CVE-2019-17559 2 Apache, Debian 2 Traffic Server, Debian Linux 2024-11-21 9.8 Critical
There is a vulnerability in Apache Traffic Server 6.0.0 to 6.2.3, 7.0.0 to 7.1.8, and 8.0.0 to 8.0.5 with a smuggling attack and scheme parsing. Upgrade to versions 7.1.9 and 8.0.6 or later versions.
CVE-2019-10079 1 Apache 1 Traffic Server 2024-11-21 7.5 High
Apache Traffic Server is vulnerable to HTTP/2 setting flood attacks. Earlier versions of Apache Traffic Server didn't limit the number of setting frames sent from the client using the HTTP/2 protocol. Users should upgrade to Apache Traffic Server 7.1.7, 8.0.4, or later versions.
CVE-2018-8040 2 Apache, Debian 2 Traffic Server, Debian Linux 2024-11-21 N/A
Pages that are rendered using the ESI plugin can have access to the cookie header when the plugin is configured not to allow access. This affects Apache Traffic Server (ATS) versions 6.0.0 to 6.2.2 and 7.0.0 to 7.1.3. To resolve this issue users running 6.x should upgrade to 6.2.3 or later versions and 7.x users should upgrade to 7.1.4 or later versions.
CVE-2018-8022 1 Apache 1 Traffic Server 2024-11-21 N/A
A carefully crafted invalid TLS handshake can cause Apache Traffic Server (ATS) to segfault. This affects version 6.2.2. To resolve this issue users running 6.2.2 should upgrade to 6.2.3 or later versions.
CVE-2018-8005 2 Apache, Debian 2 Traffic Server, Debian Linux 2024-11-21 N/A
When there are multiple ranges in a range request, Apache Traffic Server (ATS) will read the entire object from cache. This can cause performance problems with large objects in cache. This affects versions 6.0.0 to 6.2.2 and 7.0.0 to 7.1.3. To resolve this issue users running 6.x users should upgrade to 6.2.3 or later versions and 7.x users should upgrade to 7.1.4 or later versions.
CVE-2018-8004 2 Apache, Debian 2 Traffic Server, Debian Linux 2024-11-21 N/A
There are multiple HTTP smuggling and cache poisoning issues when clients making malicious requests interact with Apache Traffic Server (ATS). This affects versions 6.0.0 to 6.2.2 and 7.0.0 to 7.1.3. To resolve this issue users running 6.x should upgrade to 6.2.3 or later versions and 7.x users should upgrade to 7.1.4 or later versions.
CVE-2018-1318 2 Apache, Debian 2 Traffic Server, Debian Linux 2024-11-21 N/A
Adding method ACLs in remap.config can cause a segfault when the user makes a carefully crafted request. This affects versions Apache Traffic Server (ATS) 6.0.0 to 6.2.2 and 7.0.0 to 7.1.3. To resolve this issue users running 6.x should upgrade to 6.2.3 or later versions and 7.x users should upgrade to 7.1.4 or later versions.
CVE-2018-11783 1 Apache 1 Traffic Server 2024-11-21 N/A
sslheaders plugin extracts information from the client certificate and sets headers in the request based on the configuration of the plugin. The plugin doesn't strip the headers from the request in some scenarios. This problem was discovered in versions 6.0.0 to 6.0.3, 7.0.0 to 7.1.5, and 8.0.0 to 8.0.1.
CVE-2017-7671 2 Apache, Debian 2 Traffic Server, Debian Linux 2024-11-21 N/A
There is a DOS attack vulnerability in Apache Traffic Server (ATS) 5.2.0 to 5.3.2, 6.0.0 to 6.2.0, and 7.0.0 with the TLS handshake. This issue can cause the server to coredump.
CVE-2017-5660 2 Apache, Debian 2 Traffic Server, Debian Linux 2024-11-21 N/A
There is a vulnerability in Apache Traffic Server (ATS) 6.2.0 and prior and 7.0.0 and prior with the Host header and line folding. This can have issues when interacting with upstream proxies and the wrong host being used.
CVE-2017-5659 1 Apache 1 Traffic Server 2024-11-21 N/A
Apache Traffic Server before 6.2.1 generates a coredump when there is a mismatch between content length and chunked encoding.