CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
gpiolib: cdev: fix uninitialised kfifo
If a line is requested with debounce, and that results in debouncing
in software, and the line is subsequently reconfigured to enable edge
detection then the allocation of the kfifo to contain edge events is
overlooked. This results in events being written to and read from an
uninitialised kfifo. Read events are returned to userspace.
Initialise the kfifo in the case where the software debounce is
already active. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: uvc: use correct buffer size when parsing configfs lists
This commit fixes uvc gadget support on 32-bit platforms.
Commit 0df28607c5cb ("usb: gadget: uvc: Generalise helper functions for
reuse") introduced a helper function __uvcg_iter_item_entries() to aid
with parsing lists of items on configfs attributes stores. This function
is a generalization of another very similar function, which used a
stack-allocated temporary buffer of fixed size for each item in the list
and used the sizeof() operator to check for potential buffer overruns.
The new function was changed to allocate the now variably sized temp
buffer on heap, but wasn't properly updated to also check for max buffer
size using the computed size instead of sizeof() operator.
As a result, the maximum item size was 7 (plus null terminator) on
64-bit platforms, and 3 on 32-bit ones. While 7 is accidentally just
barely enough, 3 is definitely too small for some of UVC configfs
attributes. For example, dwFrameInteval, specified in 100ns units,
usually has 6-digit item values, e.g. 166666 for 60fps. |
Ashlar-Vellum Cobalt LI File Parsing Integer Overflow Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of LI files. The issue results from the lack of proper validation of user-supplied data, which can result in an integer overflow before allocating a buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25476. |
In the Linux kernel, the following vulnerability has been resolved:
mm/slub: avoid zeroing outside-object freepointer for single free
Commit 284f17ac13fe ("mm/slub: handle bulk and single object freeing
separately") splits single and bulk object freeing in two functions
slab_free() and slab_free_bulk() which leads slab_free() to call
slab_free_hook() directly instead of slab_free_freelist_hook().
If `init_on_free` is set, slab_free_hook() zeroes the object.
Afterward, if `slub_debug=F` and `CONFIG_SLAB_FREELIST_HARDENED` are
set, the do_slab_free() slowpath executes freelist consistency
checks and try to decode a zeroed freepointer which leads to a
"Freepointer corrupt" detection in check_object().
During bulk free, slab_free_freelist_hook() isn't affected as it always
sets it objects freepointer using set_freepointer() to maintain its
reconstructed freelist after `init_on_free`.
For single free, object's freepointer thus needs to be avoided when
stored outside the object if `init_on_free` is set. The freepointer left
as is, check_object() may later detect an invalid pointer value due to
objects overflow.
To reproduce, set `slub_debug=FU init_on_free=1 log_level=7` on the
command line of a kernel build with `CONFIG_SLAB_FREELIST_HARDENED=y`.
dmesg sample log:
[ 10.708715] =============================================================================
[ 10.710323] BUG kmalloc-rnd-05-32 (Tainted: G B T ): Freepointer corrupt
[ 10.712695] -----------------------------------------------------------------------------
[ 10.712695]
[ 10.712695] Slab 0xffffd8bdc400d580 objects=32 used=4 fp=0xffff9d9a80356f80 flags=0x200000000000a00(workingset|slab|node=0|zone=2)
[ 10.716698] Object 0xffff9d9a80356600 @offset=1536 fp=0x7ee4f480ce0ecd7c
[ 10.716698]
[ 10.716698] Bytes b4 ffff9d9a803565f0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
[ 10.720703] Object ffff9d9a80356600: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
[ 10.720703] Object ffff9d9a80356610: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
[ 10.724696] Padding ffff9d9a8035666c: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
[ 10.724696] Padding ffff9d9a8035667c: 00 00 00 00 ....
[ 10.724696] FIX kmalloc-rnd-05-32: Object at 0xffff9d9a80356600 not freed |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix to guarantee persisting compressed blocks by CP
If data block in compressed cluster is not persisted with metadata
during checkpoint, after SPOR, the data may be corrupted, let's
guarantee to write compressed page by checkpoint. |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: compress: fix to cover normal cluster write with cp_rwsem
When we overwrite compressed cluster w/ normal cluster, we should
not unlock cp_rwsem during f2fs_write_raw_pages(), otherwise data
will be corrupted if partial blocks were persisted before CP & SPOR,
due to cluster metadata wasn't updated atomically. |
In the Linux kernel, the following vulnerability has been resolved:
dpll: fix dpll_xa_ref_*_del() for multiple registrations
Currently, if there are multiple registrations of the same pin on the
same dpll device, following warnings are observed:
WARNING: CPU: 5 PID: 2212 at drivers/dpll/dpll_core.c:143 dpll_xa_ref_pin_del.isra.0+0x21e/0x230
WARNING: CPU: 5 PID: 2212 at drivers/dpll/dpll_core.c:223 __dpll_pin_unregister+0x2b3/0x2c0
The problem is, that in both dpll_xa_ref_dpll_del() and
dpll_xa_ref_pin_del() registration is only removed from list in case the
reference count drops to zero. That is wrong, the registration has to
be removed always.
To fix this, remove the registration from the list and free
it unconditionally, instead of doing it only when the ref reference
counter reaches zero. |
Ashlar-Vellum Graphite VC6 File Parsing Out-Of-Bounds Write Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Graphite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper validation of user-supplied data, which can result in a write past the end of an allocated buffer. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25465. |
In the Linux kernel, the following vulnerability has been resolved:
NTB: fix possible name leak in ntb_register_device()
If device_register() fails in ntb_register_device(), the device name
allocated by dev_set_name() should be freed. As per the comment in
device_register(), callers should use put_device() to give up the
reference in the error path. So fix this by calling put_device() in the
error path so that the name can be freed in kobject_cleanup().
As a result of this, put_device() in the error path of
ntb_register_device() is removed and the actual error is returned.
[mani: reworded commit message] |
In the Linux kernel, the following vulnerability has been resolved:
mm/slab: make __free(kfree) accept error pointers
Currently, if an automatically freed allocation is an error pointer that
will lead to a crash. An example of this is in wm831x_gpio_dbg_show().
171 char *label __free(kfree) = gpiochip_dup_line_label(chip, i);
172 if (IS_ERR(label)) {
173 dev_err(wm831x->dev, "Failed to duplicate label\n");
174 continue;
175 }
The auto clean up function should check for error pointers as well,
otherwise we're going to keep hitting issues like this. |
A flaw has been found in SourceCodester Online Exam Form Submission 1.0. This impacts an unknown function of the file /register.php. This manipulation of the argument img causes unrestricted upload. It is possible to initiate the attack remotely. The exploit has been published and may be used. |
Ashlar-Vellum Cobalt LI File Parsing Type Confusion Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of LI files. The issue results from the lack of proper validation of user-supplied data, which can result in a type confusion condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26051. |
Ashlar-Vellum Cobalt XE File Parsing Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of XE files. The issue results from the lack of proper validation of user-supplied data, which can result in a read before the start of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26045. |
Ashlar-Vellum Cobalt CO File Parsing Out-Of-Bounds Read Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a read past the end of an allocated data structure. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26235. |
Ashlar-Vellum Graphite VC6 File Parsing Uninitialized Variable Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Graphite. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of VC6 files. The issue results from the lack of proper initialization of memory prior to accessing it. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-25459. |
Ashlar-Vellum Cobalt CO File Parsing Memory Corruption Remote Code Execution Vulnerability. This vulnerability allows remote attackers to execute arbitrary code on affected installations of Ashlar-Vellum Cobalt. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file.
The specific flaw exists within the parsing of CO files. The issue results from the lack of proper validation of user-supplied data, which can result in a memory corruption condition. An attacker can leverage this vulnerability to execute code in the context of the current process. Was ZDI-CAN-26053. |
A security vulnerability has been detected in PHPGurukul Directory Management System 2.0. This vulnerability affects unknown code of the file /admin/add-directory.php. The manipulation of the argument fullname leads to cross site scripting. The attack may be initiated remotely. The exploit has been disclosed publicly and may be used. |
In the Linux kernel, the following vulnerability has been resolved:
md: Fix missing release of 'active_io' for flush
submit_flushes
atomic_set(&mddev->flush_pending, 1);
rdev_for_each_rcu(rdev, mddev)
atomic_inc(&mddev->flush_pending);
bi->bi_end_io = md_end_flush
submit_bio(bi);
/* flush io is done first */
md_end_flush
if (atomic_dec_and_test(&mddev->flush_pending))
percpu_ref_put(&mddev->active_io)
-> active_io is not released
if (atomic_dec_and_test(&mddev->flush_pending))
-> missing release of active_io
For consequence, mddev_suspend() will wait for 'active_io' to be zero
forever.
Fix this problem by releasing 'active_io' in submit_flushes() if
'flush_pending' is decreased to zero. |
In the Linux kernel, the following vulnerability has been resolved:
e1000e: change usleep_range to udelay in PHY mdic access
This is a partial revert of commit 6dbdd4de0362 ("e1000e: Workaround
for sporadic MDI error on Meteor Lake systems"). The referenced commit
used usleep_range inside the PHY access routines, which are sometimes
called from an atomic context. This can lead to a kernel panic in some
scenarios, such as cable disconnection and reconnection on vPro systems.
Solve this by changing the usleep_range calls back to udelay. |
In the Linux kernel, the following vulnerability has been resolved:
pci_iounmap(): Fix MMIO mapping leak
The #ifdef ARCH_HAS_GENERIC_IOPORT_MAP accidentally also guards iounmap(),
which means MMIO mappings are leaked.
Move the guard so we call iounmap() for MMIO mappings. |