CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Insufficient access control in subsystem for Intel (R) processor graphics in 6th, 7th, 8th and 9th Generation Intel(R) Core(TM) Processor Families; Intel(R) Pentium(R) Processor J, N, Silver and Gold Series; Intel(R) Celeron(R) Processor J, N, G3900 and G4900 Series; Intel(R) Atom(R) Processor A and E3900 Series; Intel(R) Xeon(R) Processor E3-1500 v5 and v6 and E-2100 Processor Families may allow an authenticated user to potentially enable denial of service via local access. |
Insufficient memory protection in Intel(R) TXT for certain Intel(R) Core Processors and Intel(R) Xeon(R) Processors may allow a privileged user to potentially enable escalation of privilege via local access. |
Insufficient memory protection in Intel(R) 6th Generation Core Processors and greater, supporting TXT, may allow a privileged user to potentially enable escalation of privilege via local access. |
Insufficient memory protection in Intel(R) 6th Generation Core Processors and greater, supporting SGX, may allow a privileged user to potentially enable escalation of privilege via local access. |
Insufficient access control in protected memory subsystem for Intel(R) SGX for 6th, 7th, 8th, 9th Generation Intel(R) Core(TM) Processor Families; Intel(R) Xeon(R) Processor E3-1500 v5, v6 Families; Intel(R) Xeon(R) E-2100 & E-2200 Processor Families with Intel(R) Processor Graphics may allow a privileged user to potentially enable information disclosure via local access. |
Systems with microprocessors utilizing speculative execution may allow unauthorized disclosure of information to an attacker with local user access via a side-channel attack on the directional branch predictor, as demonstrated by a pattern history table (PHT), aka BranchScope. |
Systems with microprocessors utilizing speculative execution and branch prediction may allow unauthorized disclosure of information to an attacker with local user access via a speculative buffer overflow and side-channel analysis. |
Existing UEFI setting restrictions for DCI (Direct Connect Interface) in 5th and 6th generation Intel Xeon Processor E3 Family, Intel Xeon Scalable processors, and Intel Xeon Processor D Family allows a limited physical presence attacker to potentially access platform secrets via debug interfaces. |
Systems with microprocessors utilizing speculative execution and that perform speculative reads of system registers may allow unauthorized disclosure of system parameters to an attacker with local user access via a side-channel analysis, aka Rogue System Register Read (RSRE), Variant 3a. |
Systems with microprocessors utilizing speculative execution and speculative execution of memory reads before the addresses of all prior memory writes are known may allow unauthorized disclosure of information to an attacker with local user access via a side-channel analysis, aka Speculative Store Bypass (SSB), Variant 4. |
Buffer overflow in HTTP handler in Intel Active Management Technology in Intel Converged Security Manageability Engine Firmware 3.x, 4.x, 5.x, 6.x, 7.x, 8.x, 9.x, 10.x, and 11.x may allow an attacker to execute arbitrary code via the same subnet. |
Logic bug in Intel Converged Security Management Engine 11.x may allow an attacker to execute arbitrary code via local privileged access. |
Systems with microprocessors utilizing speculative execution and Intel software guard extensions (Intel SGX) may allow unauthorized disclosure of information residing in the L1 data cache from an enclave to an attacker with local user access via a side-channel analysis. |
Improper invalidation for page table updates by a virtual guest operating system for multiple Intel(R) Processors may allow an authenticated user to potentially enable denial of service of the host system via local access. |
Systems with microprocessors utilizing speculative execution and indirect branch prediction may allow unauthorized disclosure of information to an attacker with local user access via a side-channel analysis of the data cache. |
Configuration of SPI Flash in platforms based on multiple Intel platforms allow a local attacker to alter the behavior of the SPI flash potentially leading to a Denial of Service. |
Improper input validation in UEFI firmware for some Intel(R) Processors may allow a privileged user to potentially enable escalation of privilege via local access. |