| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The GeoIP functionality in ISC BIND 9.10.0 through 9.10.1 allows remote attackers to cause a denial of service (assertion failure and named exit) via vectors related to (1) the lack of GeoIP databases for both IPv4 and IPv6, or (2) IPv6 support with certain options. |
| ISC BIND 9.0.x through 9.8.x, 9.9.0 through 9.9.6, and 9.10.0 through 9.10.1 does not limit delegation chaining, which allows remote attackers to cause a denial of service (memory consumption and named crash) via a large or infinite number of referrals. |
| Race condition in resolver.c in named in ISC BIND 9.9.8 before 9.9.8-P2 and 9.10.3 before 9.10.3-P2 allows remote attackers to cause a denial of service (INSIST assertion failure and daemon exit) via unspecified vectors. |
| ISC DHCP 4.x before 4.1-ESV-R12-P1, 4.2.x, and 4.3.x before 4.3.3-P1 allows remote attackers to cause a denial of service (application crash) via an invalid length field in a UDP IPv4 packet. |
| There had existed in one of the ISC BIND libraries a bug in a function that was used by dhcpd when operating in DHCPv6 mode. There was also a bug in dhcpd relating to the use of this function per its documentation, but the bug in the library function prevented this from causing any harm. All releases of dhcpd from ISC contain copies of this, and other, BIND libraries in combinations that have been tested prior to release and are known to not present issues like this. Some third-party packagers of ISC software have modified the dhcpd source, BIND source, or version matchup in ways that create the crash potential. Based on reports available to ISC, the crash probability is large and no analysis has been done on how, or even if, the probability can be manipulated by an attacker. Affects: Builds of dhcpd versions prior to version 4.4.1 when using BIND versions 9.11.2 or later, or BIND versions with specific bug fixes backported to them. ISC does not have access to comprehensive version lists for all repackagings of dhcpd that are vulnerable. In particular, builds from other vendors may also be affected. Operators are advised to consult their vendor documentation. |
| The server in ISC DHCP 3.x and 4.x before 4.2.2, 3.1-ESV before 3.1-ESV-R3, and 4.1-ESV before 4.1-ESV-R3 allows remote attackers to cause a denial of service (daemon exit) via a crafted DHCP packet. |
| named in ISC BIND 9.6.2 before 9.6.2-P3, 9.6-ESV before 9.6-ESV-R3, and 9.7.x before 9.7.2-P3 does not properly handle the combination of signed negative responses and corresponding RRSIG records in the cache, which allows remote attackers to cause a denial of service (daemon crash) via a query for cached data. |
| ISC BIND 9.7.1 through 9.7.2-P3, when configured as an authoritative server, allows remote attackers to cause a denial of service (deadlock and daemon hang) by sending a query at the time of (1) an IXFR transfer or (2) a DDNS update. |
| Race condition in the ns_client structure management in ISC BIND 9.9.x before 9.9.1-P2 allows remote attackers to cause a denial of service (memory consumption or process exit) via a large volume of TCP queries. |
| The DHCPv6 server in ISC DHCP 4.0.x and 4.1.x before 4.1.2-P1, 4.0-ESV and 4.1-ESV before 4.1-ESV-R1, and 4.2.x before 4.2.1b1 allows remote attackers to cause a denial of service (assertion failure and daemon crash) by sending a message over IPv6 for a declined and abandoned address. |
| ISC DHCP 4.1.2 through 4.2.4 and 4.1-ESV before 4.1-ESV-R6 allows remote attackers to cause a denial of service (infinite loop and CPU consumption) via a malformed client identifier. |
| Off-by-one error in named in ISC BIND 9.x before 9.7.3-P1, 9.8.x before 9.8.0-P2, 9.4-ESV before 9.4-ESV-R4-P1, and 9.6-ESV before 9.6-ESV-R4-P1 allows remote DNS servers to cause a denial of service (assertion failure and daemon exit) via a negative response containing large RRSIG RRsets. |
| Multiple memory leaks in ISC DHCP 4.1.x and 4.2.x before 4.2.4-P1 and 4.1-ESV before 4.1-ESV-R6 allow remote attackers to cause a denial of service (memory consumption) by sending many requests. |
| The STARTTLS implementation in nnrpd in INN before 2.5.3 does not properly restrict I/O buffering, which allows man-in-the-middle attackers to insert commands into encrypted sessions by sending a cleartext command that is processed after TLS is in place, related to a "plaintext command injection" attack, a similar issue to CVE-2011-0411. |
| libdns in ISC DHCP 4.2.x before 4.2.5-P1 allows remote name servers to cause a denial of service (memory consumption) via vectors involving a regular expression, as demonstrated by a memory-exhaustion attack against a machine running a dhcpd process, a related issue to CVE-2013-2266. |
| Unspecified vulnerability in ISC BIND 9 9.8.0, 9.8.0-P1, 9.8.0-P2, and 9.8.1b1, when recursion is enabled and the Response Policy Zone (RPZ) contains DNAME or certain CNAME records, allows remote attackers to cause a denial of service (named daemon crash) via an unspecified query. |
| ISC DHCP 4.1.x before 4.1-ESV-R7 and 4.2.x before 4.2.4-P2 allows remote attackers to cause a denial of service (daemon crash) in opportunistic circumstances by establishing an IPv6 lease in an environment where the lease expiration time is later reduced. |
| The logging functionality in dhcpd in ISC DHCP before 4.2.3-P2, when using Dynamic DNS (DDNS) and issuing IPv6 addresses, does not properly handle the DHCPv6 lease structure, which allows remote attackers to cause a denial of service (NULL pointer dereference and daemon crash) via crafted packets related to a lease-status update. |
| Buffer overflow in ISC DHCP 4.2.x before 4.2.4-P1, when DHCPv6 mode is enabled, allows remote attackers to cause a denial of service (segmentation fault and daemon exit) via a crafted client identifier parameter. |
| Unspecified vulnerability in ISC BIND 9 9.6.x before 9.6-ESV-R4-P3, 9.7.x before 9.7.3-P3, and 9.8.x before 9.8.0-P4 allows remote attackers to cause a denial of service (named daemon crash) via a crafted UPDATE request. |