| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Microsoft Outlook Security Feature Bypass Vulnerability |
| The issue was addressed with improved checks. This issue is fixed in macOS Ventura 13.1, watchOS 9.2, iOS 16.2 and iPadOS 16.2, tvOS 16.2. An attacker with arbitrary read and write capability may be able to bypass Pointer Authentication. Apple is aware of a report that this issue may have been exploited against versions of iOS released before iOS 15.7.1. |
| yt-grabber-tui is a C++ terminal user interface application for downloading YouTube content. yt-grabber-tui version 1.0 contains a Time-of-Check to Time-of-Use (TOCTOU) race condition (CWE-367) in the creation of the default configuration file config.json. In version 1.0, load_json_settings in Settings.hpp checks for the existence of config.json using boost::filesystem::exists and, if the file is missing, calls create_json_settings which writes the JSON configuration with boost::property_tree::write_json. A local attacker with write access to the application’s configuration directory (~/.config/yt-grabber-tui on Linux or the current working directory on Windows) can create a symbolic link between the existence check and the subsequent write so that the write operation follows the symlink and overwrites an attacker-chosen file accessible to the running process. This enables arbitrary file overwrite within the privileges of the application process, which can corrupt files and cause loss of application or user data. If the application is executed with elevated privileges, this could extend to system file corruption. The issue is fixed in version 1.0.1. |
| Creative Cloud Desktop versions 6.7.0.278 and earlier are affected by a Time-of-check Time-of-use (TOCTOU) Race Condition vulnerability that could lead to arbitrary file system write. A low-privileged attacker could exploit the timing between the check and use of a resource, potentially allowing unauthorized modifications to files. Exploitation of this issue does not require user interaction. |
| Link Following Local Privilege Escalation Vulnerability in NortonUtilitiesSvc in Norton Utilities Ultimate Version 24.2.16862.6344 on Windows 10 Pro x64 allows local attackers to escalate privileges and execute arbitrary code in the context of SYSTEM via the creation of a symbolic link and leveraging a TOCTTOU (time-of-check to time-of-use) attack. |
| In OpenBSD 7.4 before errata 009, a race condition between pf(4)'s processing of packets and expiration of packet states may cause a kernel panic.
|
| A race condition exists in the Falcon sensor for Windows that could allow an attacker, with the prior ability to execute code on a host, to delete arbitrary files. CrowdStrike released a security fix for this issue in Falcon sensor for Windows versions 7.24 and above and all Long Term Visibility (LTV) sensors.
There is no indication of exploitation of these issues in the wild. Our threat hunting and intelligence team are actively monitoring for exploitation and we maintain visibility into any such attempts.
The Falcon sensor for Mac, the Falcon sensor for Linux and the Falcon sensor for Legacy Systems are not impacted by this.
CrowdStrike was made aware of this issue through our HackerOne bug bounty program. It was discovered by Cong Cheng and responsibly disclosed. |
| In the Linux kernel, the following vulnerability has been resolved:
io_uring/io-wq: Use set_bit() and test_bit() at worker->flags
Utilize set_bit() and test_bit() on worker->flags within io_uring/io-wq
to address potential data races.
The structure io_worker->flags may be accessed through various data
paths, leading to concurrency issues. When KCSAN is enabled, it reveals
data races occurring in io_worker_handle_work and
io_wq_activate_free_worker functions.
BUG: KCSAN: data-race in io_worker_handle_work / io_wq_activate_free_worker
write to 0xffff8885c4246404 of 4 bytes by task 49071 on cpu 28:
io_worker_handle_work (io_uring/io-wq.c:434 io_uring/io-wq.c:569)
io_wq_worker (io_uring/io-wq.c:?)
<snip>
read to 0xffff8885c4246404 of 4 bytes by task 49024 on cpu 5:
io_wq_activate_free_worker (io_uring/io-wq.c:? io_uring/io-wq.c:285)
io_wq_enqueue (io_uring/io-wq.c:947)
io_queue_iowq (io_uring/io_uring.c:524)
io_req_task_submit (io_uring/io_uring.c:1511)
io_handle_tw_list (io_uring/io_uring.c:1198)
<snip>
Line numbers against commit 18daea77cca6 ("Merge tag 'for-linus' of
git://git.kernel.org/pub/scm/virt/kvm/kvm").
These races involve writes and reads to the same memory location by
different tasks running on different CPUs. To mitigate this, refactor
the code to use atomic operations such as set_bit(), test_bit(), and
clear_bit() instead of basic "and" and "or" operations. This ensures
thread-safe manipulation of worker flags.
Also, move `create_index` to avoid holes in the structure. |
| Race condition in Team Chat for some Zoom Workplace Apps and SDKs for Windows may allow an authenticated user to conduct information disclosure via network access. |
| Integer overflow or wraparound in Windows SPNEGO Extended Negotiation allows an authorized attacker to elevate privileges locally. |
| Time-of-check time-of-use (toctou) race condition in Windows TCP/IP allows an authorized attacker to elevate privileges locally. |
| APTIOV contains a vulnerability in BIOS where an attacker may cause a TOCTOU Race Condition by local means. Successful exploitation of this vulnerability may lead to execution of arbitrary code on the target device. |
| APTIOV contains a vulnerability in BIOS where an attacker may cause a Time-of-check Time-of-use (TOCTOU) Race Condition by local means. Successful exploitation of this vulnerability may lead to arbitrary code execution. |
| APTIOV contains a vulnerability in BIOS where an attacker may cause a Time-of-check Time-of-use (TOCTOU) Race Condition by local means. Successful exploitation of this vulnerability may lead to arbitrary code execution. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: qcom: uefisecapp: fix efivars registration race
Since the conversion to using the TZ allocator, the efivars service is
registered before the memory pool has been allocated, something which
can lead to a NULL-pointer dereference in case of a racing EFI variable
access.
Make sure that all resources have been set up before registering the
efivars. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/proc/task_mmu: fix loss of young/dirty bits during pagemap scan
make_uffd_wp_pte() was previously doing:
pte = ptep_get(ptep);
ptep_modify_prot_start(ptep);
pte = pte_mkuffd_wp(pte);
ptep_modify_prot_commit(ptep, pte);
But if another thread accessed or dirtied the pte between the first 2
calls, this could lead to loss of that information. Since
ptep_modify_prot_start() gets and clears atomically, the following is the
correct pattern and prevents any possible race. Any access after the
first call would see an invalid pte and cause a fault:
pte = ptep_modify_prot_start(ptep);
pte = pte_mkuffd_wp(pte);
ptep_modify_prot_commit(ptep, pte); |
| Wasmtime is an open source runtime for WebAssembly. Under certain concurrent event orderings, a `wasmtime::Engine`'s internal type registry was susceptible to double-unregistration bugs due to a race condition, leading to panics and potentially type registry corruption. That registry corruption could, following an additional and particular sequence of concurrent events, lead to violations of WebAssembly's control-flow integrity (CFI) and type safety. Users that do not use `wasmtime::Engine` across multiple threads are not affected. Users that only create new modules across threads over time are additionally not affected. Reproducing this bug requires creating and dropping multiple type instances (such as `wasmtime::FuncType` or `wasmtime::ArrayType`) concurrently on multiple threads, where all types are associated with the same `wasmtime::Engine`. **Wasm guests cannot trigger this bug.** See the "References" section below for a list of Wasmtime types-related APIs that are affected. Wasmtime maintains an internal registry of types within a `wasmtime::Engine` and an engine is shareable across threads. Types can be created and referenced through creation of a `wasmtime::Module`, creation of `wasmtime::FuncType`, or a number of other APIs where the host creates a function (see "References" below). Each of these cases interacts with an engine to deduplicate type information and manage type indices that are used to implement type checks in WebAssembly's `call_indirect` function, for example. This bug is a race condition in this management where the internal type registry could be corrupted to trigger an assert or contain invalid state. Wasmtime's internal representation of a type has individual types (e.g. one-per-host-function) maintain a registration count of how many time it's been used. Types additionally have state within an engine behind a read-write lock such as lookup/deduplication information. The race here is a time-of-check versus time-of-use (TOCTOU) bug where one thread atomically decrements a type entry's registration count, observes zero registrations, and then acquires a lock in order to unregister that entry. However, between when this first thread observed the zero-registration count and when it acquires that lock, another thread could perform the following sequence of events: re-register another copy of the type, which deduplicates to that same entry, resurrecting it and incrementing its registration count; then drop the type and decrement its registration count; observe that the registration count is now zero; acquire the type registry lock; and finally unregister the type. Now, when the original thread finally acquires the lock and unregisters the entry, it is the second time this entry has been unregistered. This bug was originally introduced in Wasmtime 19's development of the WebAssembly GC proposal. This bug affects users who are not using the GC proposal, however, and affects Wasmtime in its default configuration even when the GC proposal is disabled. Wasmtime users using 19.0.0 and after are all affected by this issue. We have released the following Wasmtime versions, all of which have a fix for this bug: * 21.0.2 * 22.0.1 * 23.0.3 * 24.0.1 * 25.0.2. If your application creates and drops Wasmtime types on multiple threads concurrently, there are no known workarounds. Users are encouraged to upgrade to a patched release. |
| In the Linux kernel, the following vulnerability has been resolved:
fork: do not invoke uffd on fork if error occurs
Patch series "fork: do not expose incomplete mm on fork".
During fork we may place the virtual memory address space into an
inconsistent state before the fork operation is complete.
In addition, we may encounter an error during the fork operation that
indicates that the virtual memory address space is invalidated.
As a result, we should not be exposing it in any way to external machinery
that might interact with the mm or VMAs, machinery that is not designed to
deal with incomplete state.
We specifically update the fork logic to defer khugepaged and ksm to the
end of the operation and only to be invoked if no error arose, and
disallow uffd from observing fork events should an error have occurred.
This patch (of 2):
Currently on fork we expose the virtual address space of a process to
userland unconditionally if uffd is registered in VMAs, regardless of
whether an error arose in the fork.
This is performed in dup_userfaultfd_complete() which is invoked
unconditionally, and performs two duties - invoking registered handlers
for the UFFD_EVENT_FORK event via dup_fctx(), and clearing down
userfaultfd_fork_ctx objects established in dup_userfaultfd().
This is problematic, because the virtual address space may not yet be
correctly initialised if an error arose.
The change in commit d24062914837 ("fork: use __mt_dup() to duplicate
maple tree in dup_mmap()") makes this more pertinent as we may be in a
state where entries in the maple tree are not yet consistent.
We address this by, on fork error, ensuring that we roll back state that
we would otherwise expect to clean up through the event being handled by
userland and perform the memory freeing duty otherwise performed by
dup_userfaultfd_complete().
We do this by implementing a new function, dup_userfaultfd_fail(), which
performs the same loop, only decrementing reference counts.
Note that we perform mmgrab() on the parent and child mm's, however
userfaultfd_ctx_put() will mmdrop() this once the reference count drops to
zero, so we will avoid memory leaks correctly here. |
| Time-of-check time-of-use (toctou) race condition in Graphics Kernel allows an authorized attacker to execute code locally. |
| Race condition in Lapce v0.2.8 allows an attacker to elevate privileges on the system |