| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
s390/sclp: Prevent release of buffer in I/O
When a task waiting for completion of a Store Data operation is
interrupted, an attempt is made to halt this operation. If this attempt
fails due to a hardware or firmware problem, there is a chance that the
SCLP facility might store data into buffers referenced by the original
operation at a later time.
Handle this situation by not releasing the referenced data buffers if
the halt attempt fails. For current use cases, this might result in a
leak of few pages of memory in case of a rare hardware/firmware
malfunction. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: qgroup: fix quota root leak after quota disable failure
If during the quota disable we fail when cleaning the quota tree or when
deleting the root from the root tree, we jump to the 'out' label without
ever dropping the reference on the quota root, resulting in a leak of the
root since fs_info->quota_root is no longer pointing to the root (we have
set it to NULL just before those steps).
Fix this by always doing a btrfs_put_root() call under the 'out' label.
This is a problem that exists since qgroups were first added in 2012 by
commit bed92eae26cc ("Btrfs: qgroup implementation and prototypes"), but
back then we missed a kfree on the quota root and free_extent_buffer()
calls on its root and commit root nodes, since back then roots were not
yet reference counted. |
| In the Linux kernel, the following vulnerability has been resolved:
NFSv4: Fix memory leak in nfs4_set_security_label
We leak nfs_fattr and nfs4_label every time we set a security xattr. |
| In the Linux kernel, the following vulnerability has been resolved:
ibmvnic: Add tx check to prevent skb leak
Below is a summary of how the driver stores a reference to an skb during
transmit:
tx_buff[free_map[consumer_index]]->skb = new_skb;
free_map[consumer_index] = IBMVNIC_INVALID_MAP;
consumer_index ++;
Where variable data looks like this:
free_map == [4, IBMVNIC_INVALID_MAP, IBMVNIC_INVALID_MAP, 0, 3]
consumer_index^
tx_buff == [skb=null, skb=<ptr>, skb=<ptr>, skb=null, skb=null]
The driver has checks to ensure that free_map[consumer_index] pointed to
a valid index but there was no check to ensure that this index pointed
to an unused/null skb address. So, if, by some chance, our free_map and
tx_buff lists become out of sync then we were previously risking an
skb memory leak. This could then cause tcp congestion control to stop
sending packets, eventually leading to ETIMEDOUT.
Therefore, add a conditional to ensure that the skb address is null. If
not then warn the user (because this is still a bug that should be
patched) and free the old pointer to prevent memleak/tcp problems. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/exynos/vidi: fix memory leak in .get_modes()
The duplicated EDID is never freed. Fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/hwmon: Get rid of devm
When both hwmon and hwmon drvdata (on which hwmon depends) are device
managed resources, the expectation, on device unbind, is that hwmon will be
released before drvdata. However, in i915 there are two separate code
paths, which both release either drvdata or hwmon and either can be
released before the other. These code paths (for device unbind) are as
follows (see also the bug referenced below):
Call Trace:
release_nodes+0x11/0x70
devres_release_group+0xb2/0x110
component_unbind_all+0x8d/0xa0
component_del+0xa5/0x140
intel_pxp_tee_component_fini+0x29/0x40 [i915]
intel_pxp_fini+0x33/0x80 [i915]
i915_driver_remove+0x4c/0x120 [i915]
i915_pci_remove+0x19/0x30 [i915]
pci_device_remove+0x32/0xa0
device_release_driver_internal+0x19c/0x200
unbind_store+0x9c/0xb0
and
Call Trace:
release_nodes+0x11/0x70
devres_release_all+0x8a/0xc0
device_unbind_cleanup+0x9/0x70
device_release_driver_internal+0x1c1/0x200
unbind_store+0x9c/0xb0
This means that in i915, if use devm, we cannot gurantee that hwmon will
always be released before drvdata. Which means that we have a uaf if hwmon
sysfs is accessed when drvdata has been released but hwmon hasn't.
The only way out of this seems to be do get rid of devm_ and release/free
everything explicitly during device unbind.
v2: Change commit message and other minor code changes
v3: Cleanup from i915_hwmon_register on error (Armin Wolf)
v4: Eliminate potential static analyzer warning (Rodrigo)
Eliminate fetch_and_zero (Jani)
v5: Restore previous logic for ddat_gt->hwmon_dev error return (Andi) |
| In the Linux kernel, the following vulnerability has been resolved:
hv_netvsc: Don't free decrypted memory
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
The netvsc driver could free decrypted/shared pages if
set_memory_decrypted() fails. Check the decrypted field in the gpadl
to decide whether to free the memory. |
| In the Linux kernel, the following vulnerability has been resolved:
uio_hv_generic: Don't free decrypted memory
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
The VMBus device UIO driver could free decrypted/shared pages if
set_memory_decrypted() fails. Check the decrypted field in the gpadl
to decide whether to free the memory. |
| In the Linux kernel, the following vulnerability has been resolved:
Drivers: hv: vmbus: Don't free ring buffers that couldn't be re-encrypted
In CoCo VMs it is possible for the untrusted host to cause
set_memory_encrypted() or set_memory_decrypted() to fail such that an
error is returned and the resulting memory is shared. Callers need to
take care to handle these errors to avoid returning decrypted (shared)
memory to the page allocator, which could lead to functional or security
issues.
The VMBus ring buffer code could free decrypted/shared pages if
set_memory_decrypted() fails. Check the decrypted field in the struct
vmbus_gpadl for the ring buffers to decide whether to free the memory. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: lpc32xx_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: sl811: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: isp1362: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: dwc3: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once.
Note, the root dentry for the debugfs directory for the device needs to
be saved so we don't have to keep looking it up, which required a bit
more refactoring to properly create and remove it when needed. |
| In the Linux kernel, the following vulnerability has been resolved:
scsi: snic: Fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic at
once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: isp116x: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: bcm63xx_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: ULPI: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
drivers: base: component: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
trace/blktrace: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
| In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: pxa27x_udc: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |