Total
46 CVE
CVE | Vendors | Products | Updated | CVSS v3.1 |
---|---|---|---|---|
CVE-2023-5396 | 2024-08-02 | 7.4 High | ||
Server receiving a malformed message creates connection for a hostname that may cause a stack overflow resulting in possible remote code execution. See Honeywell Security Notification for recommendations on upgrading and versioning. | ||||
CVE-2024-37305 | 1 Open Quantum Safe | 1 Oqs Provider | 2024-08-02 | 8.2 High |
oqs-provider is a provider for the OpenSSL 3 cryptography library that adds support for post-quantum cryptography in TLS, X.509, and S/MIME using post-quantum algorithms from liboqs. Flaws have been identified in the way oqs-provider handles lengths decoded with DECODE_UINT32 at the start of serialized hybrid (traditional + post-quantum) keys and signatures. Unchecked length values are later used for memory reads and writes; malformed input can lead to crashes or information leakage. Handling of plain/non-hybrid PQ key operation is not affected. This issue has been patched in in v0.6.1. All users are advised to upgrade. There are no workarounds for this issue. | ||||
CVE-2024-34476 | 2024-08-02 | 5.3 Medium | ||
Open5GS before 2.7.1 is vulnerable to a reachable assertion that can cause an AMF crash via NAS messages from a UE: ogs_nas_encrypt in lib/nas/common/security.c for pkbuf->len. | ||||
CVE-2024-24851 | 2024-08-01 | 7.5 High | ||
A heap-based buffer overflow vulnerability exists in the Programming Software Connection FiBurn functionality of AutomationDirect P3-550E 1.2.10.9. A specially crafted network packet can lead to a buffer overflow. An attacker can send an unauthenticated packet to trigger this vulnerability. | ||||
CVE-2024-20294 | 2024-08-01 | 6.6 Medium | ||
A vulnerability in the Link Layer Discovery Protocol (LLDP) feature of Cisco FXOS Software and Cisco NX-OS Software could allow an unauthenticated, adjacent attacker to cause a denial of service (DoS) condition on an affected device. This vulnerability is due to improper handling of specific fields in an LLDP frame. An attacker could exploit this vulnerability by sending a crafted LLDP packet to an interface of an affected device and having an authenticated user retrieve LLDP statistics from the affected device through CLI show commands or Simple Network Management Protocol (SNMP) requests. A successful exploit could allow the attacker to cause the LLDP service to crash and stop running on the affected device. In certain situations, the LLDP crash may result in a reload of the affected device. Note: LLDP is a Layer 2 link protocol. To exploit this vulnerability, an attacker would need to be directly connected to an interface of an affected device, either physically or logically (for example, through a Layer 2 Tunnel configured to transport the LLDP protocol). | ||||
CVE-2024-3933 | 2024-08-01 | 5.3 Medium | ||
In Eclipse OpenJ9 release versions prior to 0.44.0 and after 0.13.0, when running with JVM option -Xgc:concurrentScavenge, the sequence generated for System.arrayCopy on the IBM Z platform with hardware and software support for guarded storage [1], could allow access to a buffer with an incorrect length value when executing an arraycopy sequence while the Concurrent Scavenge Garbage Collection cycle is active and the source and destination memory regions for arraycopy overlap. This allows read and write to addresses beyond the end of the array range. |