CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
USB: gadget: dummy-hcd: Fix "task hung" problem
The syzbot fuzzer has been encountering "task hung" problems ever
since the dummy-hcd driver was changed to use hrtimers instead of
regular timers. It turns out that the problems are caused by a subtle
difference between the timer_pending() and hrtimer_active() APIs.
The changeover blindly replaced the first by the second. However,
timer_pending() returns True when the timer is queued but not when its
callback is running, whereas hrtimer_active() returns True when the
hrtimer is queued _or_ its callback is running. This difference
occasionally caused dummy_urb_enqueue() to think that the callback
routine had not yet started when in fact it was almost finished. As a
result the hrtimer was not restarted, which made it impossible for the
driver to dequeue later the URB that was just enqueued. This caused
usb_kill_urb() to hang, and things got worse from there.
Since hrtimers have no API for telling when they are queued and the
callback isn't running, the driver must keep track of this for itself.
That's what this patch does, adding a new "timer_pending" flag and
setting or clearing it at the appropriate times. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix uninitialized pointer free in add_inode_ref()
The add_inode_ref() function does not initialize the "name" struct when
it is declared. If any of the following calls to "read_one_inode()
returns NULL,
dir = read_one_inode(root, parent_objectid);
if (!dir) {
ret = -ENOENT;
goto out;
}
inode = read_one_inode(root, inode_objectid);
if (!inode) {
ret = -EIO;
goto out;
}
then "name.name" would be freed on "out" before being initialized.
out:
...
kfree(name.name);
This issue was reported by Coverity with CID 1526744. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix uninitialized pointer free on read_alloc_one_name() error
The function read_alloc_one_name() does not initialize the name field of
the passed fscrypt_str struct if kmalloc fails to allocate the
corresponding buffer. Thus, it is not guaranteed that
fscrypt_str.name is initialized when freeing it.
This is a follow-up to the linked patch that fixes the remaining
instances of the bug introduced by commit e43eec81c516 ("btrfs: use
struct qstr instead of name and namelen pairs"). |
In the Linux kernel, the following vulnerability has been resolved:
drm/v3d: Stop the active perfmon before being destroyed
When running `kmscube` with one or more performance monitors enabled
via `GALLIUM_HUD`, the following kernel panic can occur:
[ 55.008324] Unable to handle kernel paging request at virtual address 00000000052004a4
[ 55.008368] Mem abort info:
[ 55.008377] ESR = 0x0000000096000005
[ 55.008387] EC = 0x25: DABT (current EL), IL = 32 bits
[ 55.008402] SET = 0, FnV = 0
[ 55.008412] EA = 0, S1PTW = 0
[ 55.008421] FSC = 0x05: level 1 translation fault
[ 55.008434] Data abort info:
[ 55.008442] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000
[ 55.008455] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 55.008467] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 55.008481] user pgtable: 4k pages, 39-bit VAs, pgdp=00000001046c6000
[ 55.008497] [00000000052004a4] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000
[ 55.008525] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP
[ 55.008542] Modules linked in: rfcomm [...] vc4 v3d snd_soc_hdmi_codec drm_display_helper
gpu_sched drm_shmem_helper cec drm_dma_helper drm_kms_helper i2c_brcmstb
drm drm_panel_orientation_quirks snd_soc_core snd_compress snd_pcm_dmaengine snd_pcm snd_timer snd backlight
[ 55.008799] CPU: 2 PID: 166 Comm: v3d_bin Tainted: G C 6.6.47+rpt-rpi-v8 #1 Debian 1:6.6.47-1+rpt1
[ 55.008824] Hardware name: Raspberry Pi 4 Model B Rev 1.5 (DT)
[ 55.008838] pstate: 20000005 (nzCv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 55.008855] pc : __mutex_lock.constprop.0+0x90/0x608
[ 55.008879] lr : __mutex_lock.constprop.0+0x58/0x608
[ 55.008895] sp : ffffffc080673cf0
[ 55.008904] x29: ffffffc080673cf0 x28: 0000000000000000 x27: ffffff8106188a28
[ 55.008926] x26: ffffff8101e78040 x25: ffffff8101baa6c0 x24: ffffffd9d989f148
[ 55.008947] x23: ffffffda1c2a4008 x22: 0000000000000002 x21: ffffffc080673d38
[ 55.008968] x20: ffffff8101238000 x19: ffffff8104f83188 x18: 0000000000000000
[ 55.008988] x17: 0000000000000000 x16: ffffffda1bd04d18 x15: 00000055bb08bc90
[ 55.009715] x14: 0000000000000000 x13: 0000000000000000 x12: ffffffda1bd4cbb0
[ 55.010433] x11: 00000000fa83b2da x10: 0000000000001a40 x9 : ffffffda1bd04d04
[ 55.011162] x8 : ffffff8102097b80 x7 : 0000000000000000 x6 : 00000000030a5857
[ 55.011880] x5 : 00ffffffffffffff x4 : 0300000005200470 x3 : 0300000005200470
[ 55.012598] x2 : ffffff8101238000 x1 : 0000000000000021 x0 : 0300000005200470
[ 55.013292] Call trace:
[ 55.013959] __mutex_lock.constprop.0+0x90/0x608
[ 55.014646] __mutex_lock_slowpath+0x1c/0x30
[ 55.015317] mutex_lock+0x50/0x68
[ 55.015961] v3d_perfmon_stop+0x40/0xe0 [v3d]
[ 55.016627] v3d_bin_job_run+0x10c/0x2d8 [v3d]
[ 55.017282] drm_sched_main+0x178/0x3f8 [gpu_sched]
[ 55.017921] kthread+0x11c/0x128
[ 55.018554] ret_from_fork+0x10/0x20
[ 55.019168] Code: f9400260 f1001c1f 54001ea9 927df000 (b9403401)
[ 55.019776] ---[ end trace 0000000000000000 ]---
[ 55.020411] note: v3d_bin[166] exited with preempt_count 1
This issue arises because, upon closing the file descriptor (which happens
when we interrupt `kmscube`), the active performance monitor is not
stopped. Although all perfmons are destroyed in `v3d_perfmon_close_file()`,
the active performance monitor's pointer (`v3d->active_perfmon`) is still
retained.
If `kmscube` is run again, the driver will attempt to stop the active
performance monitor using the stale pointer in `v3d->active_perfmon`.
However, this pointer is no longer valid because the previous process has
already terminated, and all performance monitors associated with it have
been destroyed and freed.
To fix this, when the active performance monitor belongs to a given
process, explicitly stop it before destroying and freeing it. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k_htc: Use __skb_set_length() for resetting urb before resubmit
Syzbot points out that skb_trim() has a sanity check on the existing length of
the skb, which can be uninitialised in some error paths. The intent here is
clearly just to reset the length to zero before resubmitting, so switch to
calling __skb_set_length(skb, 0) directly. In addition, __skb_set_length()
already contains a call to skb_reset_tail_pointer(), so remove the redundant
call.
The syzbot report came from ath9k_hif_usb_reg_in_cb(), but there's a similar
usage of skb_trim() in ath9k_hif_usb_rx_cb(), change both while we're at it. |
In the Linux kernel, the following vulnerability has been resolved:
um: line: always fill *error_out in setup_one_line()
The pointer isn't initialized by callers, but I have
encountered cases where it's still printed; initialize
it in all possible cases in setup_one_line(). |
In the Linux kernel, the following vulnerability has been resolved:
drm/client: Fix error code in drm_client_buffer_vmap_local()
This function accidentally returns zero/success on the failure path.
It leads to locking issues and an uninitialized *map_copy in the
caller. |
In the Linux kernel, the following vulnerability has been resolved:
net: txgbe: initialize num_q_vectors for MSI/INTx interrupts
When using MSI/INTx interrupts, wx->num_q_vectors is uninitialized.
Thus there will be kernel panic in wx_alloc_q_vectors() to allocate
queue vectors. |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: qcom: Fix uninitialized pointer dmactl
In the case where __lpass_get_dmactl_handle is called and the driver
id dai_id is invalid the pointer dmactl is not being assigned a value,
and dmactl contains a garbage value since it has not been initialized
and so the null check may not work. Fix this to initialize dmactl to
NULL. One could argue that modern compilers will set this to zero, but
it is useful to keep this initialized as per the same way in functions
__lpass_platform_codec_intf_init and lpass_cdc_dma_daiops_hw_params.
Cleans up clang scan build warning:
sound/soc/qcom/lpass-cdc-dma.c:275:7: warning: Branch condition
evaluates to a garbage value [core.uninitialized.Branch] |
In the Linux kernel, the following vulnerability has been resolved:
net/sched: taprio: avoid disabling offload when it was never enabled
In an incredibly strange API design decision, qdisc->destroy() gets
called even if qdisc->init() never succeeded, not exclusively since
commit 87b60cfacf9f ("net_sched: fix error recovery at qdisc creation"),
but apparently also earlier (in the case of qdisc_create_dflt()).
The taprio qdisc does not fully acknowledge this when it attempts full
offload, because it starts off with q->flags = TAPRIO_FLAGS_INVALID in
taprio_init(), then it replaces q->flags with TCA_TAPRIO_ATTR_FLAGS
parsed from netlink (in taprio_change(), tail called from taprio_init()).
But in taprio_destroy(), we call taprio_disable_offload(), and this
determines what to do based on FULL_OFFLOAD_IS_ENABLED(q->flags).
But looking at the implementation of FULL_OFFLOAD_IS_ENABLED()
(a bitwise check of bit 1 in q->flags), it is invalid to call this macro
on q->flags when it contains TAPRIO_FLAGS_INVALID, because that is set
to U32_MAX, and therefore FULL_OFFLOAD_IS_ENABLED() will return true on
an invalid set of flags.
As a result, it is possible to crash the kernel if user space forces an
error between setting q->flags = TAPRIO_FLAGS_INVALID, and the calling
of taprio_enable_offload(). This is because drivers do not expect the
offload to be disabled when it was never enabled.
The error that we force here is to attach taprio as a non-root qdisc,
but instead as child of an mqprio root qdisc:
$ tc qdisc add dev swp0 root handle 1: \
mqprio num_tc 8 map 0 1 2 3 4 5 6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 hw 0
$ tc qdisc replace dev swp0 parent 1:1 \
taprio num_tc 8 map 0 1 2 3 4 5 6 7 \
queues 1@0 1@1 1@2 1@3 1@4 1@5 1@6 1@7 base-time 0 \
sched-entry S 0x7f 990000 sched-entry S 0x80 100000 \
flags 0x0 clockid CLOCK_TAI
Unable to handle kernel paging request at virtual address fffffffffffffff8
[fffffffffffffff8] pgd=0000000000000000, p4d=0000000000000000
Internal error: Oops: 96000004 [#1] PREEMPT SMP
Call trace:
taprio_dump+0x27c/0x310
vsc9959_port_setup_tc+0x1f4/0x460
felix_port_setup_tc+0x24/0x3c
dsa_slave_setup_tc+0x54/0x27c
taprio_disable_offload.isra.0+0x58/0xe0
taprio_destroy+0x80/0x104
qdisc_create+0x240/0x470
tc_modify_qdisc+0x1fc/0x6b0
rtnetlink_rcv_msg+0x12c/0x390
netlink_rcv_skb+0x5c/0x130
rtnetlink_rcv+0x1c/0x2c
Fix this by keeping track of the operations we made, and undo the
offload only if we actually did it.
I've added "bool offloaded" inside a 4 byte hole between "int clockid"
and "atomic64_t picos_per_byte". Now the first cache line looks like
below:
$ pahole -C taprio_sched net/sched/sch_taprio.o
struct taprio_sched {
struct Qdisc * * qdiscs; /* 0 8 */
struct Qdisc * root; /* 8 8 */
u32 flags; /* 16 4 */
enum tk_offsets tk_offset; /* 20 4 */
int clockid; /* 24 4 */
bool offloaded; /* 28 1 */
/* XXX 3 bytes hole, try to pack */
atomic64_t picos_per_byte; /* 32 0 */
/* XXX 8 bytes hole, try to pack */
spinlock_t current_entry_lock; /* 40 0 */
/* XXX 8 bytes hole, try to pack */
struct sched_entry * current_entry; /* 48 8 */
struct sched_gate_list * oper_sched; /* 56 8 */
/* --- cacheline 1 boundary (64 bytes) --- */ |
In the Linux kernel, the following vulnerability has been resolved:
mac80211: track only QoS data frames for admission control
For admission control, obviously all of that only works for
QoS data frames, otherwise we cannot even access the QoS
field in the header.
Syzbot reported (see below) an uninitialized value here due
to a status of a non-QoS nullfunc packet, which isn't even
long enough to contain the QoS header.
Fix this to only do anything for QoS data packets. |
In the Linux kernel, the following vulnerability has been resolved:
drm/msm: Fix mmap to include VM_IO and VM_DONTDUMP
In commit 510410bfc034 ("drm/msm: Implement mmap as GEM object
function") we switched to a new/cleaner method of doing things. That's
good, but we missed a little bit.
Before that commit, we used to _first_ run through the
drm_gem_mmap_obj() case where `obj->funcs->mmap()` was NULL. That meant
that we ran:
vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
vma->vm_page_prot = pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
...and _then_ we modified those mappings with our own. Now that
`obj->funcs->mmap()` is no longer NULL we don't run the default
code. It looks like the fact that the vm_flags got VM_IO / VM_DONTDUMP
was important because we're now getting crashes on Chromebooks that
use ARC++ while logging out. Specifically a crash that looks like this
(this is on a 5.10 kernel w/ relevant backports but also seen on a
5.15 kernel):
Unable to handle kernel paging request at virtual address ffffffc008000000
Mem abort info:
ESR = 0x96000006
EC = 0x25: DABT (current EL), IL = 32 bits
SET = 0, FnV = 0
EA = 0, S1PTW = 0
Data abort info:
ISV = 0, ISS = 0x00000006
CM = 0, WnR = 0
swapper pgtable: 4k pages, 39-bit VAs, pgdp=000000008293d000
[ffffffc008000000] pgd=00000001002b3003, p4d=00000001002b3003,
pud=00000001002b3003, pmd=0000000000000000
Internal error: Oops: 96000006 [#1] PREEMPT SMP
[...]
CPU: 7 PID: 15734 Comm: crash_dump64 Tainted: G W 5.10.67 #1 [...]
Hardware name: Qualcomm Technologies, Inc. sc7280 IDP SKU2 platform (DT)
pstate: 80400009 (Nzcv daif +PAN -UAO -TCO BTYPE=--)
pc : __arch_copy_to_user+0xc0/0x30c
lr : copyout+0xac/0x14c
[...]
Call trace:
__arch_copy_to_user+0xc0/0x30c
copy_page_to_iter+0x1a0/0x294
process_vm_rw_core+0x240/0x408
process_vm_rw+0x110/0x16c
__arm64_sys_process_vm_readv+0x30/0x3c
el0_svc_common+0xf8/0x250
do_el0_svc+0x30/0x80
el0_svc+0x10/0x1c
el0_sync_handler+0x78/0x108
el0_sync+0x184/0x1c0
Code: f8408423 f80008c3 910020c6 36100082 (b8404423)
Let's add the two flags back in.
While we're at it, the fact that we aren't running the default means
that we _don't_ need to clear out VM_PFNMAP, so remove that and save
an instruction.
NOTE: it was confirmed that VM_IO was the important flag to fix the
problem I was seeing, but adding back VM_DONTDUMP seems like a sane
thing to do so I'm doing that too. |
Acrobat Reader versions 24.001.30225, 20.005.30748, 25.001.20428 and earlier are affected by an Access of Uninitialized Pointer vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
Acrobat Reader versions 24.001.30225, 20.005.30748, 25.001.20428 and earlier are affected by an Access of Uninitialized Pointer vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
Adobe Media Encoder version 15.2 (and earlier) is affected by an uninitialized pointer vulnerability when parsing a specially crafted file. An unauthenticated attacker could leverage this vulnerability to read arbitrary file system information in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
Adobe Premiere Rush versions 1.5.16 (and earlier) allows access to an uninitialized pointer vulnerability that allows remote attackers to disclose arbitrary data on affected installations. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of MP4 files. The issue results from the lack of proper initialization of memory prior to accessing it. |
Adobe Premiere Rush versions 1.5.16 (and earlier) allows access to an uninitialized pointer vulnerability that allows remote attackers to disclose sensitive information on affected installations. User interaction is required to exploit this vulnerability in that the target must visit a malicious page or open a malicious file. The specific flaw exists within the parsing of MP4 files. The issue results from the lack of proper initialization of memory prior to accessing it. |
Wasmtime is an open source runtime for WebAssembly & WASI. Prior to versions 0.34.1 and 0.33.1, there exists a bug in the pooling instance allocator in Wasmtime's runtime where a failure to instantiate an instance for a module that defines an `externref` global will result in an invalid drop of a `VMExternRef` via an uninitialized pointer. A number of conditions listed in the GitHub Security Advisory must be true in order for an instance to be vulnerable to this issue. Maintainers believe that the effective impact of this bug is relatively small because the usage of `externref` is still uncommon and without a resource limiter configured on the `Store`, which is not the default configuration, it is only possible to trigger the bug from an error returned by `mprotect` or `VirtualAlloc`. Note that on Linux with the `uffd` feature enabled, it is only possible to trigger the bug from a resource limiter as the call to `mprotect` is skipped. The bug has been fixed in 0.34.1 and 0.33.1 and users are encouraged to upgrade as soon as possible. If it is not possible to upgrade to version 0.34.1 or 0.33.1 of the `wasmtime` crate, it is recommend that support for the reference types proposal be disabled by passing `false` to `Config::wasm_reference_types`. Doing so will prevent modules that use `externref` from being loaded entirely. |
Adobe Acrobat Reader versions 22.001.20142 (and earlier), 20.005.30334 (and earlier) and 17.012.30229 (and earlier) are affected by an Access of Uninitialized Pointer vulnerability that could result in arbitrary code execution in the context of the current user. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |
Adobe Photoshop versions 22.5.7 (and earlier) and 23.3.2 (and earlier) are affected by an Access of Uninitialized Pointer vulnerability that could lead to disclosure of sensitive memory. An attacker could leverage this vulnerability to bypass mitigations such as ASLR. Exploitation of this issue requires user interaction in that a victim must open a malicious file. |