CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
media: hi846: fix usage of pm_runtime_get_if_in_use()
pm_runtime_get_if_in_use() does not only return nonzero values when
the device is in use, it can return a negative errno too.
And especially during resuming from system suspend, when runtime pm
is not yet up again, -EAGAIN is being returned, so the subsequent
pm_runtime_put() call results in a refcount underflow.
Fix system-resume by handling -EAGAIN of pm_runtime_get_if_in_use(). |
In the Linux kernel, the following vulnerability has been resolved:
mm: fix zswap writeback race condition
The zswap writeback mechanism can cause a race condition resulting in
memory corruption, where a swapped out page gets swapped in with data that
was written to a different page.
The race unfolds like this:
1. a page with data A and swap offset X is stored in zswap
2. page A is removed off the LRU by zpool driver for writeback in
zswap-shrink work, data for A is mapped by zpool driver
3. user space program faults and invalidates page entry A, offset X is
considered free
4. kswapd stores page B at offset X in zswap (zswap could also be
full, if so, page B would then be IOed to X, then skip step 5.)
5. entry A is replaced by B in tree->rbroot, this doesn't affect the
local reference held by zswap-shrink work
6. zswap-shrink work writes back A at X, and frees zswap entry A
7. swapin of slot X brings A in memory instead of B
The fix:
Once the swap page cache has been allocated (case ZSWAP_SWAPCACHE_NEW),
zswap-shrink work just checks that the local zswap_entry reference is
still the same as the one in the tree. If it's not the same it means that
it's either been invalidated or replaced, in both cases the writeback is
aborted because the local entry contains stale data.
Reproducer:
I originally found this by running `stress` overnight to validate my work
on the zswap writeback mechanism, it manifested after hours on my test
machine. The key to make it happen is having zswap writebacks, so
whatever setup pumps /sys/kernel/debug/zswap/written_back_pages should do
the trick.
In order to reproduce this faster on a vm, I setup a system with ~100M of
available memory and a 500M swap file, then running `stress --vm 1
--vm-bytes 300000000 --vm-stride 4000` makes it happen in matter of tens
of minutes. One can speed things up even more by swinging
/sys/module/zswap/parameters/max_pool_percent up and down between, say, 20
and 1; this makes it reproduce in tens of seconds. It's crucial to set
`--vm-stride` to something other than 4096 otherwise `stress` won't
realize that memory has been corrupted because all pages would have the
same data. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath12k: Avoid NULL pointer access during management transmit cleanup
Currently 'ar' reference is not added in skb_cb.
Though this is generally not used during transmit completion
callbacks, on interface removal the remaining idr cleanup callback
uses the ar pointer from skb_cb from management txmgmt_idr. Hence fill them
during transmit call for proper usage to avoid NULL pointer dereference.
Tested-on: QCN9274 hw2.0 PCI WLAN.WBE.1.0.1-00029-QCAHKSWPL_SILICONZ-1 |
In the Linux kernel, the following vulnerability has been resolved:
dma-buf/dma-resv: Stop leaking on krealloc() failure
Currently dma_resv_get_fences() will leak the previously
allocated array if the fence iteration got restarted and
the krealloc_array() fails.
Free the old array by hand, and make sure we still clear
the returned *fences so the caller won't end up accessing
freed memory. Some (but not all) of the callers of
dma_resv_get_fences() seem to still trawl through the
array even when dma_resv_get_fences() failed. And let's
zero out *num_fences as well for good measure. |
In the Linux kernel, the following vulnerability has been resolved:
ACPICA: Avoid undefined behavior: applying zero offset to null pointer
ACPICA commit 770653e3ba67c30a629ca7d12e352d83c2541b1e
Before this change we see the following UBSAN stack trace in Fuchsia:
#0 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302
#1.2 0x000020d0f660777f in ubsan_get_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:41 <libclang_rt.asan.so>+0x3d77f
#1.1 0x000020d0f660777f in maybe_print_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:51 <libclang_rt.asan.so>+0x3d77f
#1 0x000020d0f660777f in ~scoped_report() compiler-rt/lib/ubsan/ubsan_diag.cpp:387 <libclang_rt.asan.so>+0x3d77f
#2 0x000020d0f660b96d in handlepointer_overflow_impl() compiler-rt/lib/ubsan/ubsan_handlers.cpp:809 <libclang_rt.asan.so>+0x4196d
#3 0x000020d0f660b50d in compiler-rt/lib/ubsan/ubsan_handlers.cpp:815 <libclang_rt.asan.so>+0x4150d
#4 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302
#5 0x000021e4213e2369 in acpi_ds_call_control_method(struct acpi_thread_state*, struct acpi_walk_state*, union acpi_parse_object*) ../../third_party/acpica/source/components/dispatcher/dsmethod.c:605 <platform-bus-x86.so>+0x262369
#6 0x000021e421437fac in acpi_ps_parse_aml(struct acpi_walk_state*) ../../third_party/acpica/source/components/parser/psparse.c:550 <platform-bus-x86.so>+0x2b7fac
#7 0x000021e4214464d2 in acpi_ps_execute_method(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/parser/psxface.c:244 <platform-bus-x86.so>+0x2c64d2
#8 0x000021e4213aa052 in acpi_ns_evaluate(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/namespace/nseval.c:250 <platform-bus-x86.so>+0x22a052
#9 0x000021e421413dd8 in acpi_ns_init_one_device(acpi_handle, u32, void*, void**) ../../third_party/acpica/source/components/namespace/nsinit.c:735 <platform-bus-x86.so>+0x293dd8
#10 0x000021e421429e98 in acpi_ns_walk_namespace(acpi_object_type, acpi_handle, u32, u32, acpi_walk_callback, acpi_walk_callback, void*, void**) ../../third_party/acpica/source/components/namespace/nswalk.c:298 <platform-bus-x86.so>+0x2a9e98
#11 0x000021e4214131ac in acpi_ns_initialize_devices(u32) ../../third_party/acpica/source/components/namespace/nsinit.c:268 <platform-bus-x86.so>+0x2931ac
#12 0x000021e42147c40d in acpi_initialize_objects(u32) ../../third_party/acpica/source/components/utilities/utxfinit.c:304 <platform-bus-x86.so>+0x2fc40d
#13 0x000021e42126d603 in acpi::acpi_impl::initialize_acpi(acpi::acpi_impl*) ../../src/devices/board/lib/acpi/acpi-impl.cc:224 <platform-bus-x86.so>+0xed603
Add a simple check that avoids incrementing a pointer by zero, but
otherwise behaves as before. Note that our findings are against ACPICA
20221020, but the same code exists on master. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: exit gracefully if reloc roots don't match
[BUG]
Syzbot reported a crash that an ASSERT() got triggered inside
prepare_to_merge().
[CAUSE]
The root cause of the triggered ASSERT() is we can have a race between
quota tree creation and relocation.
This leads us to create a duplicated quota tree in the
btrfs_read_fs_root() path, and since it's treated as fs tree, it would
have ROOT_SHAREABLE flag, causing us to create a reloc tree for it.
The bug itself is fixed by a dedicated patch for it, but this already
taught us the ASSERT() is not something straightforward for
developers.
[ENHANCEMENT]
Instead of using an ASSERT(), let's handle it gracefully and output
extra info about the mismatch reloc roots to help debug.
Also with the above ASSERT() removed, we can trigger ASSERT(0)s inside
merge_reloc_roots() later.
Also replace those ASSERT(0)s with WARN_ON()s. |
In the Linux kernel, the following vulnerability has been resolved:
arm64/sme: Set new vector length before reallocating
As part of fixing the allocation of the buffer for SVE state when changing
SME vector length we introduced an immediate reallocation of the SVE state,
this is also done when changing the SVE vector length for consistency.
Unfortunately this reallocation is done prior to writing the new vector
length to the task struct, meaning the allocation is done with the old
vector length and can lead to memory corruption due to an undersized buffer
being used.
Move the update of the vector length before the allocation to ensure that
the new vector length is taken into account.
For some reason this isn't triggering any problems when running tests on
the arm64 fixes branch (even after repeated tries) but is triggering
issues very often after merge into mainline. |
In the Linux kernel, the following vulnerability has been resolved:
ipv6/addrconf: fix a potential refcount underflow for idev
Now in addrconf_mod_rs_timer(), reference idev depends on whether
rs_timer is not pending. Then modify rs_timer timeout.
There is a time gap in [1], during which if the pending rs_timer
becomes not pending. It will miss to hold idev, but the rs_timer
is activated. Thus rs_timer callback function addrconf_rs_timer()
will be executed and put idev later without holding idev. A refcount
underflow issue for idev can be caused by this.
if (!timer_pending(&idev->rs_timer))
in6_dev_hold(idev);
<--------------[1]
mod_timer(&idev->rs_timer, jiffies + when);
To fix the issue, hold idev if mod_timer() return 0. |
In the Linux kernel, the following vulnerability has been resolved:
irqchip/alpine-msi: Fix refcount leak in alpine_msix_init_domains
of_irq_find_parent() returns a node pointer with refcount incremented,
We should use of_node_put() on it when not needed anymore.
Add missing of_node_put() to avoid refcount leak. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix amdgpu_irq_put call trace in gmc_v10_0_hw_fini
The gmc.ecc_irq is enabled by firmware per IFWI setting,
and the host driver is not privileged to enable/disable
the interrupt. So, it is meaningless to use the amdgpu_irq_put
function in gmc_v10_0_hw_fini, which also leads to the call
trace.
[ 82.340264] Call Trace:
[ 82.340265] <TASK>
[ 82.340269] gmc_v10_0_hw_fini+0x83/0xa0 [amdgpu]
[ 82.340447] gmc_v10_0_suspend+0xe/0x20 [amdgpu]
[ 82.340623] amdgpu_device_ip_suspend_phase2+0x127/0x1c0 [amdgpu]
[ 82.340789] amdgpu_device_ip_suspend+0x3d/0x80 [amdgpu]
[ 82.340955] amdgpu_device_pre_asic_reset+0xdd/0x2b0 [amdgpu]
[ 82.341122] amdgpu_device_gpu_recover.cold+0x4dd/0xbb2 [amdgpu]
[ 82.341359] amdgpu_debugfs_reset_work+0x4c/0x70 [amdgpu]
[ 82.341529] process_one_work+0x21d/0x3f0
[ 82.341535] worker_thread+0x1fa/0x3c0
[ 82.341538] ? process_one_work+0x3f0/0x3f0
[ 82.341540] kthread+0xff/0x130
[ 82.341544] ? kthread_complete_and_exit+0x20/0x20
[ 82.341547] ret_from_fork+0x22/0x30 |
In the Linux kernel, the following vulnerability has been resolved:
mlxsw: minimal: fix potential memory leak in mlxsw_m_linecards_init
The line cards array is not freed in the error path of
mlxsw_m_linecards_init(), which can lead to a memory leak. Fix by
freeing the array in the error path, thereby making the error path
identical to mlxsw_m_linecards_fini(). |
In the Linux kernel, the following vulnerability has been resolved:
wifi: ath9k: hif_usb: clean up skbs if ath9k_hif_usb_rx_stream() fails
Syzkaller detected a memory leak of skbs in ath9k_hif_usb_rx_stream().
While processing skbs in ath9k_hif_usb_rx_stream(), the already allocated
skbs in skb_pool are not freed if ath9k_hif_usb_rx_stream() fails. If we
have an incorrect pkt_len or pkt_tag, the input skb is considered invalid
and dropped. All the associated packets already in skb_pool should be
dropped and freed. Added a comment describing this issue.
The patch also makes remain_skb NULL after being processed so that it
cannot be referenced after potential free. The initialization of hif_dev
fields which are associated with remain_skb (rx_remain_len,
rx_transfer_len and rx_pad_len) is moved after a new remain_skb is
allocated.
Found by Linux Verification Center (linuxtesting.org) with Syzkaller. |
In the Linux kernel, the following vulnerability has been resolved:
netfilter: x_tables: fix percpu counter block leak on error path when creating new netns
Here is the stack where we allocate percpu counter block:
+-< __alloc_percpu
+-< xt_percpu_counter_alloc
+-< find_check_entry # {arp,ip,ip6}_tables.c
+-< translate_table
And it can be leaked on this code path:
+-> ip6t_register_table
+-> translate_table # allocates percpu counter block
+-> xt_register_table # fails
there is no freeing of the counter block on xt_register_table fail.
Note: xt_percpu_counter_free should be called to free it like we do in
do_replace through cleanup_entry helper (or in __ip6t_unregister_table).
Probability of hitting this error path is low AFAICS (xt_register_table
can only return ENOMEM here, as it is not replacing anything, as we are
creating new netns, and it is hard to imagine that all previous
allocations succeeded and after that one in xt_register_table failed).
But it's worth fixing even the rare leak. |
In the Linux kernel, the following vulnerability has been resolved:
RDMA/bnxt_re: wraparound mbox producer index
Driver is not handling the wraparound of the mbox producer index correctly.
Currently the wraparound happens once u32 max is reached.
Bit 31 of the producer index register is special and should be set
only once for the first command. Because the producer index overflow
setting bit31 after a long time, FW goes to initialization sequence
and this causes FW hang.
Fix is to wraparound the mbox producer index once it reaches u16 max. |
In the Linux kernel, the following vulnerability has been resolved:
PM: domains: fix memory leak with using debugfs_lookup()
When calling debugfs_lookup() the result must have dput() called on it,
otherwise the memory will leak over time. To make things simpler, just
call debugfs_lookup_and_remove() instead which handles all of the logic
at once. |
In the Linux kernel, the following vulnerability has been resolved:
af_unix: Fix data-races around user->unix_inflight.
user->unix_inflight is changed under spin_lock(unix_gc_lock),
but too_many_unix_fds() reads it locklessly.
Let's annotate the write/read accesses to user->unix_inflight.
BUG: KCSAN: data-race in unix_attach_fds / unix_inflight
write to 0xffffffff8546f2d0 of 8 bytes by task 44798 on cpu 1:
unix_inflight+0x157/0x180 net/unix/scm.c:66
unix_attach_fds+0x147/0x1e0 net/unix/scm.c:123
unix_scm_to_skb net/unix/af_unix.c:1827 [inline]
unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1950
unix_seqpacket_sendmsg net/unix/af_unix.c:2308 [inline]
unix_seqpacket_sendmsg+0xba/0x130 net/unix/af_unix.c:2292
sock_sendmsg_nosec net/socket.c:725 [inline]
sock_sendmsg+0x148/0x160 net/socket.c:748
____sys_sendmsg+0x4e4/0x610 net/socket.c:2494
___sys_sendmsg+0xc6/0x140 net/socket.c:2548
__sys_sendmsg+0x94/0x140 net/socket.c:2577
__do_sys_sendmsg net/socket.c:2586 [inline]
__se_sys_sendmsg net/socket.c:2584 [inline]
__x64_sys_sendmsg+0x45/0x50 net/socket.c:2584
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
read to 0xffffffff8546f2d0 of 8 bytes by task 44814 on cpu 0:
too_many_unix_fds net/unix/scm.c:101 [inline]
unix_attach_fds+0x54/0x1e0 net/unix/scm.c:110
unix_scm_to_skb net/unix/af_unix.c:1827 [inline]
unix_dgram_sendmsg+0x46a/0x14f0 net/unix/af_unix.c:1950
unix_seqpacket_sendmsg net/unix/af_unix.c:2308 [inline]
unix_seqpacket_sendmsg+0xba/0x130 net/unix/af_unix.c:2292
sock_sendmsg_nosec net/socket.c:725 [inline]
sock_sendmsg+0x148/0x160 net/socket.c:748
____sys_sendmsg+0x4e4/0x610 net/socket.c:2494
___sys_sendmsg+0xc6/0x140 net/socket.c:2548
__sys_sendmsg+0x94/0x140 net/socket.c:2577
__do_sys_sendmsg net/socket.c:2586 [inline]
__se_sys_sendmsg net/socket.c:2584 [inline]
__x64_sys_sendmsg+0x45/0x50 net/socket.c:2584
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x3b/0x90 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x6e/0xd8
value changed: 0x000000000000000c -> 0x000000000000000d
Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 44814 Comm: systemd-coredum Not tainted 6.4.0-11989-g6843306689af #6
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 |
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (pmbus_core) Fix NULL pointer dereference
Pass i2c_client to _pmbus_is_enabled to drop the assumption
that a regulator device is passed in.
This will fix the issue of a NULL pointer dereference when called from
_pmbus_get_flags. |
In the Linux kernel, the following vulnerability has been resolved:
ublk: fail to recover device if queue setup is interrupted
In ublk_ctrl_end_recovery(), if wait_for_completion_interruptible() is
interrupted by signal, queues aren't setup successfully yet, so we
have to fail UBLK_CMD_END_USER_RECOVERY, otherwise kernel oops can be
triggered. |
In the Linux kernel, the following vulnerability has been resolved:
md/raid5-cache: fix null-ptr-deref for r5l_flush_stripe_to_raid()
r5l_flush_stripe_to_raid() will check if the list 'flushing_ios' is
empty, and then submit 'flush_bio', however, r5l_log_flush_endio()
is clearing the list first and then clear the bio, which will cause
null-ptr-deref:
T1: submit flush io
raid5d
handle_active_stripes
r5l_flush_stripe_to_raid
// list is empty
// add 'io_end_ios' to the list
bio_init
submit_bio
// io1
T2: io1 is done
r5l_log_flush_endio
list_splice_tail_init
// clear the list
T3: submit new flush io
...
r5l_flush_stripe_to_raid
// list is empty
// add 'io_end_ios' to the list
bio_init
bio_uninit
// clear bio->bi_blkg
submit_bio
// null-ptr-deref
Fix this problem by clearing bio before clearing the list in
r5l_log_flush_endio(). |
In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to avoid potential memory corruption in __update_iostat_latency()
Add iotype sanity check to avoid potential memory corruption.
This is to fix the compile error below:
fs/f2fs/iostat.c:231 __update_iostat_latency() error: buffer overflow
'io_lat->peak_lat[type]' 3 <= 3
vim +228 fs/f2fs/iostat.c
211 static inline void __update_iostat_latency(struct bio_iostat_ctx
*iostat_ctx,
212 enum iostat_lat_type type)
213 {
214 unsigned long ts_diff;
215 unsigned int page_type = iostat_ctx->type;
216 struct f2fs_sb_info *sbi = iostat_ctx->sbi;
217 struct iostat_lat_info *io_lat = sbi->iostat_io_lat;
218 unsigned long flags;
219
220 if (!sbi->iostat_enable)
221 return;
222
223 ts_diff = jiffies - iostat_ctx->submit_ts;
224 if (page_type >= META_FLUSH)
^^^^^^^^^^
225 page_type = META;
226
227 spin_lock_irqsave(&sbi->iostat_lat_lock, flags);
@228 io_lat->sum_lat[type][page_type] += ts_diff;
^^^^^^^^^
Mixup between META_FLUSH and NR_PAGE_TYPE leads to memory corruption. |