| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A vulnerability allowing remote code execution (RCE) on the Backup Server by an authenticated domain user. |
| A vulnerability in the Mount service of Veeam Backup & Replication, which allows for remote code execution (RCE) on the Backup infrastructure hosts by an authenticated domain user. |
| Cross-site scripting (XSS) vulnerability in the Blogs widget in Liferay Portal 7.4.0 through 7.4.3.111, and older unsupported versions, and Liferay DXP 2023.Q4.0 through 2023.Q4.10, 2023.Q3.1 through 2023.Q3.8, 7.4 GA through update 92, 7.3 GA through update 36, and older unsupported versions allows remote attackers to inject arbitrary web script or HTML via a crafted <iframe> injected into a blog entry's “Content” text field
The Blogs widget in Liferay DXP does not add the sandbox attribute to <iframe> elements, which allows remote attackers to access the parent page via scripts and links in the frame page. |
| By default, Liferay Portal 7.4.0 through 7.4.3.119, and older unsupported versions, and Liferay DXP 2024.Q1.1 through 2024.Q1.5, 2023.Q4.0 through 2023.Q4.10, 2023.Q3.1 through 2023.Q3.10, 7.4 GA through update 92, and older unsupported versions is vulnerable to DNS rebinding attacks, which allows remote attackers to redirect users to arbitrary external URLs. This vulnerability can be mitigated by changing the redirect URL security from IP to domain. |
| CryptoLib provides a software-only solution using the CCSDS Space Data Link Security Protocol - Extended Procedures (SDLS-EP) to secure communications between a spacecraft running the core Flight System (cFS) and a ground station. Prier to 1.4.2, there is a missing bounds check in Crypto_Key_update() (crypto_key_mgmt.c) which allows a remote attacker to trigger a stack-based buffer overflow by supplying a TLV packet with a spoofed length field. The function calculates the number of keys from an attacker-controlled field (pdu_len), which may exceed the static array size (kblk[98]), leading to an out-of-bounds write and potential memory corruption. This vulnerability is fixed in 1.4.2. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: fix WARNING in ip6_route_net_exit_late()
During the initialization of ip6_route_net_init_late(), if file
ipv6_route or rt6_stats fails to be created, the initialization is
successful by default. Therefore, the ipv6_route or rt6_stats file
doesn't be found during the remove in ip6_route_net_exit_late(). It
will cause WRNING.
The following is the stack information:
name 'rt6_stats'
WARNING: CPU: 0 PID: 9 at fs/proc/generic.c:712 remove_proc_entry+0x389/0x460
Modules linked in:
Workqueue: netns cleanup_net
RIP: 0010:remove_proc_entry+0x389/0x460
PKRU: 55555554
Call Trace:
<TASK>
ops_exit_list+0xb0/0x170
cleanup_net+0x4ea/0xb00
process_one_work+0x9bf/0x1710
worker_thread+0x665/0x1080
kthread+0x2e4/0x3a0
ret_from_fork+0x1f/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: Fix possible leaked pernet namespace in smc_init()
In smc_init(), register_pernet_subsys(&smc_net_stat_ops) is called
without any error handling.
If it fails, registering of &smc_net_ops won't be reverted.
And if smc_nl_init() fails, &smc_net_stat_ops itself won't be reverted.
This leaves wild ops in subsystem linkedlist and when another module
tries to call register_pernet_operations() it triggers page fault:
BUG: unable to handle page fault for address: fffffbfff81b964c
RIP: 0010:register_pernet_operations+0x1b9/0x5f0
Call Trace:
<TASK>
register_pernet_subsys+0x29/0x40
ebtables_init+0x58/0x1000 [ebtables]
... |
| In the Linux kernel, the following vulnerability has been resolved:
net: mdio: fix undefined behavior in bit shift for __mdiobus_register
Shifting signed 32-bit value by 31 bits is undefined, so changing
significant bit to unsigned. The UBSAN warning calltrace like below:
UBSAN: shift-out-of-bounds in drivers/net/phy/mdio_bus.c:586:27
left shift of 1 by 31 places cannot be represented in type 'int'
Call Trace:
<TASK>
dump_stack_lvl+0x7d/0xa5
dump_stack+0x15/0x1b
ubsan_epilogue+0xe/0x4e
__ubsan_handle_shift_out_of_bounds+0x1e7/0x20c
__mdiobus_register+0x49d/0x4e0
fixed_mdio_bus_init+0xd8/0x12d
do_one_initcall+0x76/0x430
kernel_init_freeable+0x3b3/0x422
kernel_init+0x24/0x1e0
ret_from_fork+0x1f/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: Fix use-after-free caused by l2cap_reassemble_sdu
Fix the race condition between the following two flows that run in
parallel:
1. l2cap_reassemble_sdu -> chan->ops->recv (l2cap_sock_recv_cb) ->
__sock_queue_rcv_skb.
2. bt_sock_recvmsg -> skb_recv_datagram, skb_free_datagram.
An SKB can be queued by the first flow and immediately dequeued and
freed by the second flow, therefore the callers of l2cap_reassemble_sdu
can't use the SKB after that function returns. However, some places
continue accessing struct l2cap_ctrl that resides in the SKB's CB for a
short time after l2cap_reassemble_sdu returns, leading to a
use-after-free condition (the stack trace is below, line numbers for
kernel 5.19.8).
Fix it by keeping a local copy of struct l2cap_ctrl.
BUG: KASAN: use-after-free in l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth
Read of size 1 at addr ffff88812025f2f0 by task kworker/u17:3/43169
Workqueue: hci0 hci_rx_work [bluetooth]
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:107 (discriminator 4))
print_report.cold (mm/kasan/report.c:314 mm/kasan/report.c:429)
? l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth
kasan_report (mm/kasan/report.c:162 mm/kasan/report.c:493)
? l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth
l2cap_rx_state_recv (net/bluetooth/l2cap_core.c:6906) bluetooth
l2cap_rx (net/bluetooth/l2cap_core.c:7236 net/bluetooth/l2cap_core.c:7271) bluetooth
ret_from_fork (arch/x86/entry/entry_64.S:306)
</TASK>
Allocated by task 43169:
kasan_save_stack (mm/kasan/common.c:39)
__kasan_slab_alloc (mm/kasan/common.c:45 mm/kasan/common.c:436 mm/kasan/common.c:469)
kmem_cache_alloc_node (mm/slab.h:750 mm/slub.c:3243 mm/slub.c:3293)
__alloc_skb (net/core/skbuff.c:414)
l2cap_recv_frag (./include/net/bluetooth/bluetooth.h:425 net/bluetooth/l2cap_core.c:8329) bluetooth
l2cap_recv_acldata (net/bluetooth/l2cap_core.c:8442) bluetooth
hci_rx_work (net/bluetooth/hci_core.c:3642 net/bluetooth/hci_core.c:3832) bluetooth
process_one_work (kernel/workqueue.c:2289)
worker_thread (./include/linux/list.h:292 kernel/workqueue.c:2437)
kthread (kernel/kthread.c:376)
ret_from_fork (arch/x86/entry/entry_64.S:306)
Freed by task 27920:
kasan_save_stack (mm/kasan/common.c:39)
kasan_set_track (mm/kasan/common.c:45)
kasan_set_free_info (mm/kasan/generic.c:372)
____kasan_slab_free (mm/kasan/common.c:368 mm/kasan/common.c:328)
slab_free_freelist_hook (mm/slub.c:1780)
kmem_cache_free (mm/slub.c:3536 mm/slub.c:3553)
skb_free_datagram (./include/net/sock.h:1578 ./include/net/sock.h:1639 net/core/datagram.c:323)
bt_sock_recvmsg (net/bluetooth/af_bluetooth.c:295) bluetooth
l2cap_sock_recvmsg (net/bluetooth/l2cap_sock.c:1212) bluetooth
sock_read_iter (net/socket.c:1087)
new_sync_read (./include/linux/fs.h:2052 fs/read_write.c:401)
vfs_read (fs/read_write.c:482)
ksys_read (fs/read_write.c:620)
do_syscall_64 (arch/x86/entry/common.c:50 arch/x86/entry/common.c:80)
entry_SYSCALL_64_after_hwframe (arch/x86/entry/entry_64.S:120) |
| In the Linux kernel, the following vulnerability has been resolved:
netfilter: ipset: enforce documented limit to prevent allocating huge memory
Daniel Xu reported that the hash:net,iface type of the ipset subsystem does
not limit adding the same network with different interfaces to a set, which
can lead to huge memory usage or allocation failure.
The quick reproducer is
$ ipset create ACL.IN.ALL_PERMIT hash:net,iface hashsize 1048576 timeout 0
$ for i in $(seq 0 100); do /sbin/ipset add ACL.IN.ALL_PERMIT 0.0.0.0/0,kaf_$i timeout 0 -exist; done
The backtrace when vmalloc fails:
[Tue Oct 25 00:13:08 2022] ipset: vmalloc error: size 1073741848, exceeds total pages
<...>
[Tue Oct 25 00:13:08 2022] Call Trace:
[Tue Oct 25 00:13:08 2022] <TASK>
[Tue Oct 25 00:13:08 2022] dump_stack_lvl+0x48/0x60
[Tue Oct 25 00:13:08 2022] warn_alloc+0x155/0x180
[Tue Oct 25 00:13:08 2022] __vmalloc_node_range+0x72a/0x760
[Tue Oct 25 00:13:08 2022] ? hash_netiface4_add+0x7c0/0xb20
[Tue Oct 25 00:13:08 2022] ? __kmalloc_large_node+0x4a/0x90
[Tue Oct 25 00:13:08 2022] kvmalloc_node+0xa6/0xd0
[Tue Oct 25 00:13:08 2022] ? hash_netiface4_resize+0x99/0x710
<...>
The fix is to enforce the limit documented in the ipset(8) manpage:
> The internal restriction of the hash:net,iface set type is that the same
> network prefix cannot be stored with more than 64 different interfaces
> in a single set. |
| A security issue was discovered in the LRA Coordinator component of Narayana. When Cancel is called in LRA, an execution time of approximately 2 seconds occurs. If Join is called with the same LRA ID within that timeframe, the application may crash or hang indefinitely, leading to a denial of service. |
| Not a security vulnerability |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| Liferay Portal 7.4.0 through 7.4.3.109, and Liferay DXP 2023.Q4.0 through 2023.Q4.5, 2023.Q3.1 through 2023.Q3.7, 7.4 GA through update 92, 7.3 GA through update 35, and older unsupported versions does not properly restrict access to OpenAPI in certain circumstances, which allows remote attackers to access the OpenAPI YAML file via a crafted URL. |
| The ComboServlet in Liferay Portal 7.4.0 through 7.4.3.111, and older unsupported versions, and Liferay DXP 2023.Q4.0 through 2023.Q4.2, 2023.Q3.1 through 2023.Q3.5, 7.4 GA through update 92, 7.3 GA through update 35, and older unsupported versions does not limit the number or size of the files it will combine, which allows remote attackers to create very large responses that lead to a denial of service attack via the URL query string. |
| Multiple cross-site scripting (XSS) vulnerabilities in Liferay Portal 7.3.7 through 7.4.3.103, and Liferay DXP 2023.Q3.1 through 2023.Q3.4, 7.4 GA through update 92, 7.3 service pack 3 through update 36 allow remote attackers to inject arbitrary web script or HTML via a crafted payload injected into an Account Role’s “Title” text field to (1) view account role page, or (2) select account role page.
Multiple cross-site scripting (XSS) vulnerabilities in Liferay Portal 7.3.7 through 7.4.3.103, and Liferay DXP 2023.Q3.1 through 2023.Q3.4, 7.4 GA through update 92, 7.3 service pack 3 through update 36 allow remote attackers to inject arbitrary web script or HTML via a crafted payload injected into an Organization’s “Name” text field to (1) view account page, (2) view account organization page, or (3) select account organization page. |
| Information exposure through log file vulnerability in LDAP import feature in Liferay Portal 7.4.0 through 7.4.3.97, and older unsupported versions, and Liferay DXP 2023.Q3.1 through 2023.Q3.4, 7.4 GA through update 92, 7.3 GA through update 35, and older unsupported versions allows local users to view user email address in the log files. |
| Liferay Portal 7.4.0 through 7.4.3.99, and Liferay DXP 2023.Q3.1 through 2023.Q3.4, 7.4 GA through update 92, 7.3 GA through update 35, and older unsupported versions does not limit the number of objects returned from Headless API requests, which allows remote attackers to perform denial-of-service (DoS) attacks on the application by executing a request that returns a large number of objects. |
| Liferay Portal 7.4.0 through 7.4.3.99, and older unsupported versions, and Liferay DXP 2023.Q3.1 through 2023.Q3.4, 7.4 GA through update 92, 7.3 GA through update 34, and older unsupported versions stores password reset tokens in plain text, which allows attackers with access to the database to obtain the token, reset a user’s password and take over the user’s account. |
| CSRF vulnerability in Headless API in Liferay Portal 7.4.0 through 7.4.3.107, and Liferay DXP 2023.Q3.1 through 2023.Q3.4, 7.4 GA through update 92, 7.3 GA through update 35, and older unsupported versions allows remote attackers to execute any Headless API via the `endpoint` parameter. |