| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_ffa: Check if ffa_driver remove is present before executing
Currently ffa_drv->remove() is called unconditionally from
ffa_device_remove(). Since the driver registration doesn't check for it
and allows it to be registered without .remove callback, we need to check
for the presence of it before executing it from ffa_device_remove() to
above a NULL pointer dereference like the one below:
| Unable to handle kernel NULL pointer dereference at virtual address 0000000000000000
| Mem abort info:
| ESR = 0x0000000086000004
| EC = 0x21: IABT (current EL), IL = 32 bits
| SET = 0, FnV = 0
| EA = 0, S1PTW = 0
| FSC = 0x04: level 0 translation fault
| user pgtable: 4k pages, 48-bit VAs, pgdp=0000000881cc8000
| [0000000000000000] pgd=0000000000000000, p4d=0000000000000000
| Internal error: Oops: 0000000086000004 [#1] PREEMPT SMP
| CPU: 3 PID: 130 Comm: rmmod Not tainted 6.3.0-rc7 #6
| Hardware name: FVP Base RevC (DT)
| pstate: 63402809 (nZCv daif +PAN -UAO +TCO +DIT -SSBS BTYPE=-c)
| pc : 0x0
| lr : ffa_device_remove+0x20/0x2c
| Call trace:
| 0x0
| device_release_driver_internal+0x16c/0x260
| driver_detach+0x90/0xd0
| bus_remove_driver+0xdc/0x11c
| driver_unregister+0x30/0x54
| ffa_driver_unregister+0x14/0x20
| cleanup_module+0x18/0xeec
| __arm64_sys_delete_module+0x234/0x378
| invoke_syscall+0x40/0x108
| el0_svc_common+0xb4/0xf0
| do_el0_svc+0x30/0xa4
| el0_svc+0x2c/0x7c
| el0t_64_sync_handler+0x84/0xf0
| el0t_64_sync+0x190/0x194 |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix BUG in ext4_mb_new_inode_pa() due to overflow
When we calculate the end position of ext4_free_extent, this position may
be exactly where ext4_lblk_t (i.e. uint) overflows. For example, if
ac_g_ex.fe_logical is 4294965248 and ac_orig_goal_len is 2048, then the
computed end is 0x100000000, which is 0. If ac->ac_o_ex.fe_logical is not
the first case of adjusting the best extent, that is, new_bex_end > 0, the
following BUG_ON will be triggered:
=========================================================
kernel BUG at fs/ext4/mballoc.c:5116!
invalid opcode: 0000 [#1] PREEMPT SMP PTI
CPU: 3 PID: 673 Comm: xfs_io Tainted: G E 6.5.0-rc1+ #279
RIP: 0010:ext4_mb_new_inode_pa+0xc5/0x430
Call Trace:
<TASK>
ext4_mb_use_best_found+0x203/0x2f0
ext4_mb_try_best_found+0x163/0x240
ext4_mb_regular_allocator+0x158/0x1550
ext4_mb_new_blocks+0x86a/0xe10
ext4_ext_map_blocks+0xb0c/0x13a0
ext4_map_blocks+0x2cd/0x8f0
ext4_iomap_begin+0x27b/0x400
iomap_iter+0x222/0x3d0
__iomap_dio_rw+0x243/0xcb0
iomap_dio_rw+0x16/0x80
=========================================================
A simple reproducer demonstrating the problem:
mkfs.ext4 -F /dev/sda -b 4096 100M
mount /dev/sda /tmp/test
fallocate -l1M /tmp/test/tmp
fallocate -l10M /tmp/test/file
fallocate -i -o 1M -l16777203M /tmp/test/file
fsstress -d /tmp/test -l 0 -n 100000 -p 8 &
sleep 10 && killall -9 fsstress
rm -f /tmp/test/tmp
xfs_io -c "open -ad /tmp/test/file" -c "pwrite -S 0xff 0 8192"
We simply refactor the logic for adjusting the best extent by adding
a temporary ext4_free_extent ex and use extent_logical_end() to avoid
overflow, which also simplifies the code. |
| In the Linux kernel, the following vulnerability has been resolved:
power: supply: bq27xxx: Fix poll_interval handling and races on remove
Before this patch bq27xxx_battery_teardown() was setting poll_interval = 0
to avoid bq27xxx_battery_update() requeuing the delayed_work item.
There are 2 problems with this:
1. If the driver is unbound through sysfs, rather then the module being
rmmod-ed, this changes poll_interval unexpectedly
2. This is racy, after it being set poll_interval could be changed
before bq27xxx_battery_update() checks it through
/sys/module/bq27xxx_battery/parameters/poll_interval
Fix this by added a removed attribute to struct bq27xxx_device_info and
using that instead of setting poll_interval to 0.
There also is another poll_interval related race on remove(), writing
/sys/module/bq27xxx_battery/parameters/poll_interval will requeue
the delayed_work item for all devices on the bq27xxx_battery_devices
list and the device being removed was only removed from that list
after cancelling the delayed_work item.
Fix this by moving the removal from the bq27xxx_battery_devices list
to before cancelling the delayed_work item. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/client: Fix memory leak in drm_client_target_cloned
dmt_mode is allocated and never freed in this function.
It was found with the ast driver, but most drivers using generic fbdev
setup are probably affected.
This fixes the following kmemleak report:
backtrace:
[<00000000b391296d>] drm_mode_duplicate+0x45/0x220 [drm]
[<00000000e45bb5b3>] drm_client_target_cloned.constprop.0+0x27b/0x480 [drm]
[<00000000ed2d3a37>] drm_client_modeset_probe+0x6bd/0xf50 [drm]
[<0000000010e5cc9d>] __drm_fb_helper_initial_config_and_unlock+0xb4/0x2c0 [drm_kms_helper]
[<00000000909f82ca>] drm_fbdev_client_hotplug+0x2bc/0x4d0 [drm_kms_helper]
[<00000000063a69aa>] drm_client_register+0x169/0x240 [drm]
[<00000000a8c61525>] ast_pci_probe+0x142/0x190 [ast]
[<00000000987f19bb>] local_pci_probe+0xdc/0x180
[<000000004fca231b>] work_for_cpu_fn+0x4e/0xa0
[<0000000000b85301>] process_one_work+0x8b7/0x1540
[<000000003375b17c>] worker_thread+0x70a/0xed0
[<00000000b0d43cd9>] kthread+0x29f/0x340
[<000000008d770833>] ret_from_fork+0x1f/0x30
unreferenced object 0xff11000333089a00 (size 128): |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix incorrect splitting in btrfs_drop_extent_map_range
In production we were seeing a variety of WARN_ON()'s in the extent_map
code, specifically in btrfs_drop_extent_map_range() when we have to call
add_extent_mapping() for our second split.
Consider the following extent map layout
PINNED
[0 16K) [32K, 48K)
and then we call btrfs_drop_extent_map_range for [0, 36K), with
skip_pinned == true. The initial loop will have
start = 0
end = 36K
len = 36K
we will find the [0, 16k) extent, but since we are pinned we will skip
it, which has this code
start = em_end;
if (end != (u64)-1)
len = start + len - em_end;
em_end here is 16K, so now the values are
start = 16K
len = 16K + 36K - 16K = 36K
len should instead be 20K. This is a problem when we find the next
extent at [32K, 48K), we need to split this extent to leave [36K, 48k),
however the code for the split looks like this
split->start = start + len;
split->len = em_end - (start + len);
In this case we have
em_end = 48K
split->start = 16K + 36K // this should be 16K + 20K
split->len = 48K - (16K + 36K) // this overflows as 16K + 36K is 52K
and now we have an invalid extent_map in the tree that potentially
overlaps other entries in the extent map. Even in the non-overlapping
case we will have split->start set improperly, which will cause problems
with any block related calculations.
We don't actually need len in this loop, we can simply use end as our
end point, and only adjust start up when we find a pinned extent we need
to skip.
Adjust the logic to do this, which keeps us from inserting an invalid
extent map.
We only skip_pinned in the relocation case, so this is relatively rare,
except in the case where you are running relocation a lot, which can
happen with auto relocation on. |
| In the Linux kernel, the following vulnerability has been resolved:
erofs: stop parsing non-compact HEAD index if clusterofs is invalid
Syzbot generated a crafted image [1] with a non-compact HEAD index of
clusterofs 33024 while valid numbers should be 0 ~ lclustersize-1,
which causes the following unexpected behavior as below:
BUG: unable to handle page fault for address: fffff52101a3fff9
#PF: supervisor read access in kernel mode
#PF: error_code(0x0000) - not-present page
PGD 23ffed067 P4D 23ffed067 PUD 0
Oops: 0000 [#1] PREEMPT SMP KASAN
CPU: 1 PID: 4398 Comm: kworker/u5:1 Not tainted 6.3.0-rc6-syzkaller-g09a9639e56c0 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 03/30/2023
Workqueue: erofs_worker z_erofs_decompressqueue_work
RIP: 0010:z_erofs_decompress_queue+0xb7e/0x2b40
...
Call Trace:
<TASK>
z_erofs_decompressqueue_work+0x99/0xe0
process_one_work+0x8f6/0x1170
worker_thread+0xa63/0x1210
kthread+0x270/0x300
ret_from_fork+0x1f/0x30
Note that normal images or images using compact indexes are not
impacted. Let's fix this now.
[1] https://lore.kernel.org/r/000000000000ec75b005ee97fbaa@google.com |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix double free of qgroup record after failure to add delayed ref head
In the previous code it was possible to incur into a double kfree()
scenario when calling add_delayed_ref_head(). This could happen if the
record was reported to already exist in the
btrfs_qgroup_trace_extent_nolock() call, but then there was an error
later on add_delayed_ref_head(). In this case, since
add_delayed_ref_head() returned an error, the caller went to free the
record. Since add_delayed_ref_head() couldn't set this kfree'd pointer
to NULL, then kfree() would have acted on a non-NULL 'record' object
which was pointing to memory already freed by the callee.
The problem comes from the fact that the responsibility to kfree the
object is on both the caller and the callee at the same time. Hence, the
fix for this is to shift the ownership of the 'qrecord' object out of
the add_delayed_ref_head(). That is, we will never attempt to kfree()
the given object inside of this function, and will expect the caller to
act on the 'qrecord' object on its own. The only exception where the
'qrecord' object cannot be kfree'd is if it was inserted into the
tracing logic, for which we already have the 'qrecord_inserted_ret'
boolean to account for this. Hence, the caller has to kfree the object
only if add_delayed_ref_head() reports not to have inserted it on the
tracing logic.
As a side-effect of the above, we must guarantee that
'qrecord_inserted_ret' is properly initialized at the start of the
function, not at the end, and then set when an actual insert
happens. This way we avoid 'qrecord_inserted_ret' having an invalid
value on an early exit.
The documentation from the add_delayed_ref_head() has also been updated
to reflect on the exact ownership of the 'qrecord' object. |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Check skb->transport_header is set in bpf_skb_check_mtu
The bpf_skb_check_mtu helper needs to use skb->transport_header when
the BPF_MTU_CHK_SEGS flag is used:
bpf_skb_check_mtu(skb, ifindex, &mtu_len, 0, BPF_MTU_CHK_SEGS)
The transport_header is not always set. There is a WARN_ON_ONCE
report when CONFIG_DEBUG_NET is enabled + skb->gso_size is set +
bpf_prog_test_run is used:
WARNING: CPU: 1 PID: 2216 at ./include/linux/skbuff.h:3071
skb_gso_validate_network_len
bpf_skb_check_mtu
bpf_prog_3920e25740a41171_tc_chk_segs_flag # A test in the next patch
bpf_test_run
bpf_prog_test_run_skb
For a normal ingress skb (not test_run), skb_reset_transport_header
is performed but there is plan to avoid setting it as described in
commit 2170a1f09148 ("net: no longer reset transport_header in __netif_receive_skb_core()").
This patch fixes the bpf helper by checking
skb_transport_header_was_set(). The check is done just before
skb->transport_header is used, to avoid breaking the existing bpf prog.
The WARN_ON_ONCE is limited to bpf_prog_test_run, so targeting bpf-next. |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: defer config unlock in nbd_genl_connect
There is one use-after-free warning when running NBD_CMD_CONNECT and
NBD_CLEAR_SOCK:
nbd_genl_connect
nbd_alloc_and_init_config // config_refs=1
nbd_start_device // config_refs=2
set NBD_RT_HAS_CONFIG_REF open nbd // config_refs=3
recv_work done // config_refs=2
NBD_CLEAR_SOCK // config_refs=1
close nbd // config_refs=0
refcount_inc -> uaf
------------[ cut here ]------------
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 24 PID: 1014 at lib/refcount.c:25 refcount_warn_saturate+0x12e/0x290
nbd_genl_connect+0x16d0/0x1ab0
genl_family_rcv_msg_doit+0x1f3/0x310
genl_rcv_msg+0x44a/0x790
The issue can be easily reproduced by adding a small delay before
refcount_inc(&nbd->config_refs) in nbd_genl_connect():
mutex_unlock(&nbd->config_lock);
if (!ret) {
set_bit(NBD_RT_HAS_CONFIG_REF, &config->runtime_flags);
+ printk("before sleep\n");
+ mdelay(5 * 1000);
+ printk("after sleep\n");
refcount_inc(&nbd->config_refs);
nbd_connect_reply(info, nbd->index);
} |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: defer config put in recv_work
There is one uaf issue in recv_work when running NBD_CLEAR_SOCK and
NBD_CMD_RECONFIGURE:
nbd_genl_connect // conf_ref=2 (connect and recv_work A)
nbd_open // conf_ref=3
recv_work A done // conf_ref=2
NBD_CLEAR_SOCK // conf_ref=1
nbd_genl_reconfigure // conf_ref=2 (trigger recv_work B)
close nbd // conf_ref=1
recv_work B
config_put // conf_ref=0
atomic_dec(&config->recv_threads); -> UAF
Or only running NBD_CLEAR_SOCK:
nbd_genl_connect // conf_ref=2
nbd_open // conf_ref=3
NBD_CLEAR_SOCK // conf_ref=2
close nbd
nbd_release
config_put // conf_ref=1
recv_work
config_put // conf_ref=0
atomic_dec(&config->recv_threads); -> UAF
Commit 87aac3a80af5 ("nbd: call nbd_config_put() before notifying the
waiter") moved nbd_config_put() to run before waking up the waiter in
recv_work, in order to ensure that nbd_start_device_ioctl() would not
be woken up while nbd->task_recv was still uncleared.
However, in nbd_start_device_ioctl(), after being woken up it explicitly
calls flush_workqueue() to make sure all current works are finished.
Therefore, there is no need to move the config put ahead of the wakeup.
Move nbd_config_put() to the end of recv_work, so that the reference is
held for the whole lifetime of the worker thread. This makes sure the
config cannot be freed while recv_work is still running, even if clear
+ reconfigure interleave.
In addition, we don't need to worry about recv_work dropping the last
nbd_put (which causes deadlock):
path A (netlink with NBD_CFLAG_DESTROY_ON_DISCONNECT):
connect // nbd_refs=1 (trigger recv_work)
open nbd // nbd_refs=2
NBD_CLEAR_SOCK
close nbd
nbd_release
nbd_disconnect_and_put
flush_workqueue // recv_work done
nbd_config_put
nbd_put // nbd_refs=1
nbd_put // nbd_refs=0
queue_work
path B (netlink without NBD_CFLAG_DESTROY_ON_DISCONNECT):
connect // nbd_refs=2 (trigger recv_work)
open nbd // nbd_refs=3
NBD_CLEAR_SOCK // conf_refs=2
close nbd
nbd_release
nbd_config_put // conf_refs=1
nbd_put // nbd_refs=2
recv_work done // conf_refs=0, nbd_refs=1
rmmod // nbd_refs=0
Depends-on: e2daec488c57 ("nbd: Fix hungtask when nbd_config_put") |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix null deref on srq->rq.queue after resize failure
A NULL pointer dereference can occur in rxe_srq_chk_attr() when
ibv_modify_srq() is invoked twice in succession under certain error
conditions. The first call may fail in rxe_queue_resize(), which leads
rxe_srq_from_attr() to set srq->rq.queue = NULL. The second call then
triggers a crash (null deref) when accessing
srq->rq.queue->buf->index_mask.
Call Trace:
<TASK>
rxe_modify_srq+0x170/0x480 [rdma_rxe]
? __pfx_rxe_modify_srq+0x10/0x10 [rdma_rxe]
? uverbs_try_lock_object+0x4f/0xa0 [ib_uverbs]
? rdma_lookup_get_uobject+0x1f0/0x380 [ib_uverbs]
ib_uverbs_modify_srq+0x204/0x290 [ib_uverbs]
? __pfx_ib_uverbs_modify_srq+0x10/0x10 [ib_uverbs]
? tryinc_node_nr_active+0xe6/0x150
? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs]
ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x2c0/0x470 [ib_uverbs]
? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs]
? uverbs_fill_udata+0xed/0x4f0 [ib_uverbs]
ib_uverbs_run_method+0x55a/0x6e0 [ib_uverbs]
? __pfx_ib_uverbs_handler_UVERBS_METHOD_INVOKE_WRITE+0x10/0x10 [ib_uverbs]
ib_uverbs_cmd_verbs+0x54d/0x800 [ib_uverbs]
? __pfx_ib_uverbs_cmd_verbs+0x10/0x10 [ib_uverbs]
? __pfx___raw_spin_lock_irqsave+0x10/0x10
? __pfx_do_vfs_ioctl+0x10/0x10
? ioctl_has_perm.constprop.0.isra.0+0x2c7/0x4c0
? __pfx_ioctl_has_perm.constprop.0.isra.0+0x10/0x10
ib_uverbs_ioctl+0x13e/0x220 [ib_uverbs]
? __pfx_ib_uverbs_ioctl+0x10/0x10 [ib_uverbs]
__x64_sys_ioctl+0x138/0x1c0
do_syscall_64+0x82/0x250
? fdget_pos+0x58/0x4c0
? ksys_write+0xf3/0x1c0
? __pfx_ksys_write+0x10/0x10
? do_syscall_64+0xc8/0x250
? __pfx_vm_mmap_pgoff+0x10/0x10
? fget+0x173/0x230
? fput+0x2a/0x80
? ksys_mmap_pgoff+0x224/0x4c0
? do_syscall_64+0xc8/0x250
? do_user_addr_fault+0x37b/0xfe0
? clear_bhb_loop+0x50/0xa0
? clear_bhb_loop+0x50/0xa0
? clear_bhb_loop+0x50/0xa0
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| A vulnerability was detected in PandaXGO PandaX up to fb8ff40f7ce5dfebdf66306c6d85625061faf7e5. This affects an unknown function of the file config.yml of the component JWT Secret Handler. The manipulation of the argument key results in use of hard-coded cryptographic key
. The attack may be performed from remote. This attack is characterized by high complexity. The exploitability is reported as difficult. The exploit is now public and may be used. This product utilizes a rolling release system for continuous delivery, and as such, version information for affected or updated releases is not disclosed. The project was informed of the problem early through an issue report but has not responded yet. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/panthor: Fix UAF on kernel BO VA nodes
If the MMU is down, panthor_vm_unmap_range() might return an error.
We expect the page table to be updated still, and if the MMU is blocked,
the rest of the GPU should be blocked too, so no risk of accessing
physical memory returned to the system (which the current code doesn't
cover for anyway).
Proceed with the rest of the cleanup instead of bailing out and leaving
the va_node inserted in the drm_mm, which leads to UAF when other
adjacent nodes are removed from the drm_mm tree. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: fix NULL-deref on irq uninstall
In case of early initialisation errors and on platforms that do not use
the DPU controller, the deinitilisation code can be called with the kms
pointer set to NULL.
Patchwork: https://patchwork.freedesktop.org/patch/525104/ |
| In the Linux kernel, the following vulnerability has been resolved:
tracing/user_events: Ensure write index cannot be negative
The write index indicates which event the data is for and accesses a
per-file array. The index is passed by user processes during write()
calls as the first 4 bytes. Ensure that it cannot be negative by
returning -EINVAL to prevent out of bounds accesses.
Update ftrace self-test to ensure this occurs properly. |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: avoid suspicious RCU usage for synced VLAN-aware MAC addresses
When using the felix driver (the only one which supports UC filtering
and MC filtering) as a DSA master for a random other DSA switch, one can
see the following stack trace when the downstream switch ports join a
VLAN-aware bridge:
=============================
WARNING: suspicious RCU usage
-----------------------------
net/8021q/vlan_core.c:238 suspicious rcu_dereference_protected() usage!
stack backtrace:
Workqueue: dsa_ordered dsa_slave_switchdev_event_work
Call trace:
lockdep_rcu_suspicious+0x170/0x210
vlan_for_each+0x8c/0x188
dsa_slave_sync_uc+0x128/0x178
__hw_addr_sync_dev+0x138/0x158
dsa_slave_set_rx_mode+0x58/0x70
__dev_set_rx_mode+0x88/0xa8
dev_uc_add+0x74/0xa0
dsa_port_bridge_host_fdb_add+0xec/0x180
dsa_slave_switchdev_event_work+0x7c/0x1c8
process_one_work+0x290/0x568
What it's saying is that vlan_for_each() expects rtnl_lock() context and
it's not getting it, when it's called from the DSA master's ndo_set_rx_mode().
The caller of that - dsa_slave_set_rx_mode() - is the slave DSA
interface's dsa_port_bridge_host_fdb_add() which comes from the deferred
dsa_slave_switchdev_event_work().
We went to great lengths to avoid the rtnl_lock() context in that call
path in commit 0faf890fc519 ("net: dsa: drop rtnl_lock from
dsa_slave_switchdev_event_work"), and calling rtnl_lock() is simply not
an option due to the possibility of deadlocking when calling
dsa_flush_workqueue() from the call paths that do hold rtnl_lock() -
basically all of them.
So, when the DSA master calls vlan_for_each() from its ndo_set_rx_mode(),
the state of the 8021q driver on this device is really not protected
from concurrent access by anything.
Looking at net/8021q/, I don't think that vlan_info->vid_list was
particularly designed with RCU traversal in mind, so introducing an RCU
read-side form of vlan_for_each() - vlan_for_each_rcu() - won't be so
easy, and it also wouldn't be exactly what we need anyway.
In general I believe that the solution isn't in net/8021q/ anyway;
vlan_for_each() is not cut out for this task. DSA doesn't need rtnl_lock()
to be held per se - since it's not a netdev state change that we're
blocking, but rather, just concurrent additions/removals to a VLAN list.
We don't even need sleepable context - the callback of vlan_for_each()
just schedules deferred work.
The proposed escape is to remove the dependency on vlan_for_each() and
to open-code a non-sleepable, rtnl-free alternative to that, based on
copies of the VLAN list modified from .ndo_vlan_rx_add_vid() and
.ndo_vlan_rx_kill_vid(). |
| In the Linux kernel, the following vulnerability has been resolved:
binder: fix UAF of alloc->vma in race with munmap()
[ cmllamas: clean forward port from commit 015ac18be7de ("binder: fix
UAF of alloc->vma in race with munmap()") in 5.10 stable. It is needed
in mainline after the revert of commit a43cfc87caaf ("android: binder:
stop saving a pointer to the VMA") as pointed out by Liam. The commit
log and tags have been tweaked to reflect this. ]
In commit 720c24192404 ("ANDROID: binder: change down_write to
down_read") binder assumed the mmap read lock is sufficient to protect
alloc->vma inside binder_update_page_range(). This used to be accurate
until commit dd2283f2605e ("mm: mmap: zap pages with read mmap_sem in
munmap"), which now downgrades the mmap_lock after detaching the vma
from the rbtree in munmap(). Then it proceeds to teardown and free the
vma with only the read lock held.
This means that accesses to alloc->vma in binder_update_page_range() now
will race with vm_area_free() in munmap() and can cause a UAF as shown
in the following KASAN trace:
==================================================================
BUG: KASAN: use-after-free in vm_insert_page+0x7c/0x1f0
Read of size 8 at addr ffff16204ad00600 by task server/558
CPU: 3 PID: 558 Comm: server Not tainted 5.10.150-00001-gdc8dcf942daa #1
Hardware name: linux,dummy-virt (DT)
Call trace:
dump_backtrace+0x0/0x2a0
show_stack+0x18/0x2c
dump_stack+0xf8/0x164
print_address_description.constprop.0+0x9c/0x538
kasan_report+0x120/0x200
__asan_load8+0xa0/0xc4
vm_insert_page+0x7c/0x1f0
binder_update_page_range+0x278/0x50c
binder_alloc_new_buf+0x3f0/0xba0
binder_transaction+0x64c/0x3040
binder_thread_write+0x924/0x2020
binder_ioctl+0x1610/0x2e5c
__arm64_sys_ioctl+0xd4/0x120
el0_svc_common.constprop.0+0xac/0x270
do_el0_svc+0x38/0xa0
el0_svc+0x1c/0x2c
el0_sync_handler+0xe8/0x114
el0_sync+0x180/0x1c0
Allocated by task 559:
kasan_save_stack+0x38/0x6c
__kasan_kmalloc.constprop.0+0xe4/0xf0
kasan_slab_alloc+0x18/0x2c
kmem_cache_alloc+0x1b0/0x2d0
vm_area_alloc+0x28/0x94
mmap_region+0x378/0x920
do_mmap+0x3f0/0x600
vm_mmap_pgoff+0x150/0x17c
ksys_mmap_pgoff+0x284/0x2dc
__arm64_sys_mmap+0x84/0xa4
el0_svc_common.constprop.0+0xac/0x270
do_el0_svc+0x38/0xa0
el0_svc+0x1c/0x2c
el0_sync_handler+0xe8/0x114
el0_sync+0x180/0x1c0
Freed by task 560:
kasan_save_stack+0x38/0x6c
kasan_set_track+0x28/0x40
kasan_set_free_info+0x24/0x4c
__kasan_slab_free+0x100/0x164
kasan_slab_free+0x14/0x20
kmem_cache_free+0xc4/0x34c
vm_area_free+0x1c/0x2c
remove_vma+0x7c/0x94
__do_munmap+0x358/0x710
__vm_munmap+0xbc/0x130
__arm64_sys_munmap+0x4c/0x64
el0_svc_common.constprop.0+0xac/0x270
do_el0_svc+0x38/0xa0
el0_svc+0x1c/0x2c
el0_sync_handler+0xe8/0x114
el0_sync+0x180/0x1c0
[...]
==================================================================
To prevent the race above, revert back to taking the mmap write lock
inside binder_update_page_range(). One might expect an increase of mmap
lock contention. However, binder already serializes these calls via top
level alloc->mutex. Also, there was no performance impact shown when
running the binder benchmark tests. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_sdei: Fix sleep from invalid context BUG
Running a preempt-rt (v6.2-rc3-rt1) based kernel on an Ampere Altra
triggers:
BUG: sleeping function called from invalid context at kernel/locking/spinlock_rt.c:46
in_atomic(): 0, irqs_disabled(): 128, non_block: 0, pid: 24, name: cpuhp/0
preempt_count: 0, expected: 0
RCU nest depth: 0, expected: 0
3 locks held by cpuhp/0/24:
#0: ffffda30217c70d0 (cpu_hotplug_lock){++++}-{0:0}, at: cpuhp_thread_fun+0x5c/0x248
#1: ffffda30217c7120 (cpuhp_state-up){+.+.}-{0:0}, at: cpuhp_thread_fun+0x5c/0x248
#2: ffffda3021c711f0 (sdei_list_lock){....}-{3:3}, at: sdei_cpuhp_up+0x3c/0x130
irq event stamp: 36
hardirqs last enabled at (35): [<ffffda301e85b7bc>] finish_task_switch+0xb4/0x2b0
hardirqs last disabled at (36): [<ffffda301e812fec>] cpuhp_thread_fun+0x21c/0x248
softirqs last enabled at (0): [<ffffda301e80b184>] copy_process+0x63c/0x1ac0
softirqs last disabled at (0): [<0000000000000000>] 0x0
CPU: 0 PID: 24 Comm: cpuhp/0 Not tainted 5.19.0-rc3-rt5-[...]
Hardware name: WIWYNN Mt.Jade Server [...]
Call trace:
dump_backtrace+0x114/0x120
show_stack+0x20/0x70
dump_stack_lvl+0x9c/0xd8
dump_stack+0x18/0x34
__might_resched+0x188/0x228
rt_spin_lock+0x70/0x120
sdei_cpuhp_up+0x3c/0x130
cpuhp_invoke_callback+0x250/0xf08
cpuhp_thread_fun+0x120/0x248
smpboot_thread_fn+0x280/0x320
kthread+0x130/0x140
ret_from_fork+0x10/0x20
sdei_cpuhp_up() is called in the STARTING hotplug section,
which runs with interrupts disabled. Use a CPUHP_AP_ONLINE_DYN entry
instead to execute the cpuhp cb later, with preemption enabled.
SDEI originally got its own cpuhp slot to allow interacting
with perf. It got superseded by pNMI and this early slot is not
relevant anymore. [1]
Some SDEI calls (e.g. SDEI_1_0_FN_SDEI_PE_MASK) take actions on the
calling CPU. It is checked that preemption is disabled for them.
_ONLINE cpuhp cb are executed in the 'per CPU hotplug thread'.
Preemption is enabled in those threads, but their cpumask is limited
to 1 CPU.
Move 'WARN_ON_ONCE(preemptible())' statements so that SDEI cpuhp cb
don't trigger them.
Also add a check for the SDEI_1_0_FN_SDEI_PRIVATE_RESET SDEI call
which acts on the calling CPU.
[1]:
https://lore.kernel.org/all/5813b8c5-ae3e-87fd-fccc-94c9cd08816d@arm.com/ |
| Exposure of Sensitive System Information to an Unauthorized Control Sphere vulnerability in Virusdie Virusdie virusdie allows Retrieve Embedded Sensitive Data.This issue affects Virusdie: from n/a through <= 1.1.6. |
| Missing Authorization vulnerability in Addonify Addonify addonify-quick-view allows Exploiting Incorrectly Configured Access Control Security Levels.This issue affects Addonify: from n/a through <= 2.0.4. |