Search

Search Results (309902 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50297 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: ath9k: verify the expected usb_endpoints are present The bug arises when a USB device claims to be an ATH9K but doesn't have the expected endpoints. (In this case there was an interrupt endpoint where the driver expected a bulk endpoint.) The kernel needs to be able to handle such devices without getting an internal error. usb 1-1: BOGUS urb xfer, pipe 3 != type 1 WARNING: CPU: 3 PID: 500 at drivers/usb/core/urb.c:493 usb_submit_urb+0xce2/0x1430 drivers/usb/core/urb.c:493 Modules linked in: CPU: 3 PID: 500 Comm: kworker/3:2 Not tainted 5.10.135-syzkaller #0 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 Workqueue: events request_firmware_work_func RIP: 0010:usb_submit_urb+0xce2/0x1430 drivers/usb/core/urb.c:493 Call Trace: ath9k_hif_usb_alloc_rx_urbs drivers/net/wireless/ath/ath9k/hif_usb.c:908 [inline] ath9k_hif_usb_alloc_urbs+0x75e/0x1010 drivers/net/wireless/ath/ath9k/hif_usb.c:1019 ath9k_hif_usb_dev_init drivers/net/wireless/ath/ath9k/hif_usb.c:1109 [inline] ath9k_hif_usb_firmware_cb+0x142/0x530 drivers/net/wireless/ath/ath9k/hif_usb.c:1242 request_firmware_work_func+0x12e/0x240 drivers/base/firmware_loader/main.c:1097 process_one_work+0x9af/0x1600 kernel/workqueue.c:2279 worker_thread+0x61d/0x12f0 kernel/workqueue.c:2425 kthread+0x3b4/0x4a0 kernel/kthread.c:313 ret_from_fork+0x22/0x30 arch/x86/entry/entry_64.S:299 Found by Linux Verification Center (linuxtesting.org) with Syzkaller.
CVE-2022-50302 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: lockd: set other missing fields when unlocking files vfs_lock_file() expects the struct file_lock to be fully initialised by the caller. Re-exported NFSv3 has been seen to Oops if the fl_file field is NULL.
CVE-2022-50304 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: mtd: core: fix possible resource leak in init_mtd() I got the error report while inject fault in init_mtd(): sysfs: cannot create duplicate filename '/devices/virtual/bdi/mtd-0' Call Trace: <TASK> dump_stack_lvl+0x67/0x83 sysfs_warn_dup+0x60/0x70 sysfs_create_dir_ns+0x109/0x120 kobject_add_internal+0xce/0x2f0 kobject_add+0x98/0x110 device_add+0x179/0xc00 device_create_groups_vargs+0xf4/0x100 device_create+0x7b/0xb0 bdi_register_va.part.13+0x58/0x2d0 bdi_register+0x9b/0xb0 init_mtd+0x62/0x171 [mtd] do_one_initcall+0x6c/0x3c0 do_init_module+0x58/0x222 load_module+0x268e/0x27d0 __do_sys_finit_module+0xd5/0x140 do_syscall_64+0x37/0x90 entry_SYSCALL_64_after_hwframe+0x63/0xcd </TASK> kobject_add_internal failed for mtd-0 with -EEXIST, don't try to register things with the same name in the same directory. Error registering mtd class or bdi: -17 If init_mtdchar() fails in init_mtd(), mtd_bdi will not be unregistered, as a result, we can't load the mtd module again, to fix this by calling bdi_unregister(mtd_bdi) after out_procfs label.
CVE-2022-50307 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: s390/cio: fix out-of-bounds access on cio_ignore free The channel-subsystem-driver scans for newly available devices whenever device-IDs are removed from the cio_ignore list using a command such as: echo free >/proc/cio_ignore Since an I/O device scan might interfer with running I/Os, commit 172da89ed0ea ("s390/cio: avoid excessive path-verification requests") introduced an optimization to exclude online devices from the scan. The newly added check for online devices incorrectly assumes that an I/O-subchannel's drvdata points to a struct io_subchannel_private. For devices that are bound to a non-default I/O subchannel driver, such as the vfio_ccw driver, this results in an out-of-bounds read access during each scan. Fix this by changing the scan logic to rely on a driver-independent online indication. For this we can use struct subchannel->config.ena, which is the driver's requested subchannel-enabled state. Since I/Os can only be started on enabled subchannels, this matches the intent of the original optimization of not scanning devices where I/O might be running.
CVE-2022-50308 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ASoC: qcom: Add checks for devm_kcalloc As the devm_kcalloc may return NULL, the return value needs to be checked to avoid NULL poineter dereference.
CVE-2022-50311 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: cxl: Fix refcount leak in cxl_calc_capp_routing of_get_next_parent() returns a node pointer with refcount incremented, we should use of_node_put() on it when not need anymore. This function only calls of_node_put() in normal path, missing it in the error path. Add missing of_node_put() to avoid refcount leak.
CVE-2022-50315 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ata: ahci: Match EM_MAX_SLOTS with SATA_PMP_MAX_PORTS UBSAN complains about array-index-out-of-bounds: [ 1.980703] kernel: UBSAN: array-index-out-of-bounds in /build/linux-9H675w/linux-5.15.0/drivers/ata/libahci.c:968:41 [ 1.980709] kernel: index 15 is out of range for type 'ahci_em_priv [8]' [ 1.980713] kernel: CPU: 0 PID: 209 Comm: scsi_eh_8 Not tainted 5.15.0-25-generic #25-Ubuntu [ 1.980716] kernel: Hardware name: System manufacturer System Product Name/P5Q3, BIOS 1102 06/11/2010 [ 1.980718] kernel: Call Trace: [ 1.980721] kernel: <TASK> [ 1.980723] kernel: show_stack+0x52/0x58 [ 1.980729] kernel: dump_stack_lvl+0x4a/0x5f [ 1.980734] kernel: dump_stack+0x10/0x12 [ 1.980736] kernel: ubsan_epilogue+0x9/0x45 [ 1.980739] kernel: __ubsan_handle_out_of_bounds.cold+0x44/0x49 [ 1.980742] kernel: ahci_qc_issue+0x166/0x170 [libahci] [ 1.980748] kernel: ata_qc_issue+0x135/0x240 [ 1.980752] kernel: ata_exec_internal_sg+0x2c4/0x580 [ 1.980754] kernel: ? vprintk_default+0x1d/0x20 [ 1.980759] kernel: ata_exec_internal+0x67/0xa0 [ 1.980762] kernel: sata_pmp_read+0x8d/0xc0 [ 1.980765] kernel: sata_pmp_read_gscr+0x3c/0x90 [ 1.980768] kernel: sata_pmp_attach+0x8b/0x310 [ 1.980771] kernel: ata_eh_revalidate_and_attach+0x28c/0x4b0 [ 1.980775] kernel: ata_eh_recover+0x6b6/0xb30 [ 1.980778] kernel: ? ahci_do_hardreset+0x180/0x180 [libahci] [ 1.980783] kernel: ? ahci_stop_engine+0xb0/0xb0 [libahci] [ 1.980787] kernel: ? ahci_do_softreset+0x290/0x290 [libahci] [ 1.980792] kernel: ? trace_event_raw_event_ata_eh_link_autopsy_qc+0xe0/0xe0 [ 1.980795] kernel: sata_pmp_eh_recover.isra.0+0x214/0x560 [ 1.980799] kernel: sata_pmp_error_handler+0x23/0x40 [ 1.980802] kernel: ahci_error_handler+0x43/0x80 [libahci] [ 1.980806] kernel: ata_scsi_port_error_handler+0x2b1/0x600 [ 1.980810] kernel: ata_scsi_error+0x9c/0xd0 [ 1.980813] kernel: scsi_error_handler+0xa1/0x180 [ 1.980817] kernel: ? scsi_unjam_host+0x1c0/0x1c0 [ 1.980820] kernel: kthread+0x12a/0x150 [ 1.980823] kernel: ? set_kthread_struct+0x50/0x50 [ 1.980826] kernel: ret_from_fork+0x22/0x30 [ 1.980831] kernel: </TASK> This happens because sata_pmp_init_links() initialize link->pmp up to SATA_PMP_MAX_PORTS while em_priv is declared as 8 elements array. I can't find the maximum Enclosure Management ports specified in AHCI spec v1.3.1, but "12.2.1 LED message type" states that "Port Multiplier Information" can utilize 4 bits, which implies it can support up to 16 ports. Hence, use SATA_PMP_MAX_PORTS as EM_MAX_SLOTS to resolve the issue. BugLink: https://bugs.launchpad.net/bugs/1970074
CVE-2022-50320 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: ACPI: tables: FPDT: Don't call acpi_os_map_memory() on invalid phys address On a Packard Bell Dot SC (Intel Atom N2600 model) there is a FPDT table which contains invalid physical addresses, with high bits set which fall outside the range of the CPU-s supported physical address range. Calling acpi_os_map_memory() on such an invalid phys address leads to the below WARN_ON in ioremap triggering resulting in an oops/stacktrace. Add code to verify the physical address before calling acpi_os_map_memory() to fix / avoid the oops. [ 1.226900] ioremap: invalid physical address 3001000000000000 [ 1.226949] ------------[ cut here ]------------ [ 1.226962] WARNING: CPU: 1 PID: 1 at arch/x86/mm/ioremap.c:200 __ioremap_caller.cold+0x43/0x5f [ 1.226996] Modules linked in: [ 1.227016] CPU: 1 PID: 1 Comm: swapper/0 Not tainted 6.0.0-rc3+ #490 [ 1.227029] Hardware name: Packard Bell dot s/SJE01_CT, BIOS V1.10 07/23/2013 [ 1.227038] RIP: 0010:__ioremap_caller.cold+0x43/0x5f [ 1.227054] Code: 96 00 00 e9 f8 af 24 ff 89 c6 48 c7 c7 d8 0c 84 99 e8 6a 96 00 00 e9 76 af 24 ff 48 89 fe 48 c7 c7 a8 0c 84 99 e8 56 96 00 00 <0f> 0b e9 60 af 24 ff 48 8b 34 24 48 c7 c7 40 0d 84 99 e8 3f 96 00 [ 1.227067] RSP: 0000:ffffb18c40033d60 EFLAGS: 00010286 [ 1.227084] RAX: 0000000000000032 RBX: 3001000000000000 RCX: 0000000000000000 [ 1.227095] RDX: 0000000000000001 RSI: 00000000ffffdfff RDI: 00000000ffffffff [ 1.227105] RBP: 3001000000000000 R08: 0000000000000000 R09: ffffb18c40033c18 [ 1.227115] R10: 0000000000000003 R11: ffffffff99d62fe8 R12: 0000000000000008 [ 1.227124] R13: 0003001000000000 R14: 0000000000001000 R15: 3001000000000000 [ 1.227135] FS: 0000000000000000(0000) GS:ffff913a3c080000(0000) knlGS:0000000000000000 [ 1.227146] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 1.227156] CR2: 0000000000000000 CR3: 0000000018c26000 CR4: 00000000000006e0 [ 1.227167] Call Trace: [ 1.227176] <TASK> [ 1.227185] ? acpi_os_map_iomem+0x1c9/0x1e0 [ 1.227215] ? kmem_cache_alloc_trace+0x187/0x370 [ 1.227254] acpi_os_map_iomem+0x1c9/0x1e0 [ 1.227288] acpi_init_fpdt+0xa8/0x253 [ 1.227308] ? acpi_debugfs_init+0x1f/0x1f [ 1.227339] do_one_initcall+0x5a/0x300 [ 1.227406] ? rcu_read_lock_sched_held+0x3f/0x80 [ 1.227442] kernel_init_freeable+0x28b/0x2cc [ 1.227512] ? rest_init+0x170/0x170 [ 1.227538] kernel_init+0x16/0x140 [ 1.227552] ret_from_fork+0x1f/0x30 [ 1.227639] </TASK> [ 1.227647] irq event stamp: 186819 [ 1.227656] hardirqs last enabled at (186825): [<ffffffff98184a6e>] __up_console_sem+0x5e/0x70 [ 1.227672] hardirqs last disabled at (186830): [<ffffffff98184a53>] __up_console_sem+0x43/0x70 [ 1.227686] softirqs last enabled at (186576): [<ffffffff980fbc9d>] __irq_exit_rcu+0xed/0x160 [ 1.227701] softirqs last disabled at (186569): [<ffffffff980fbc9d>] __irq_exit_rcu+0xed/0x160 [ 1.227715] ---[ end trace 0000000000000000 ]---
CVE-2022-50325 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ASoC: Intel: avs: Fix potential RX buffer overflow If an event caused firmware to return invalid RX size for LARGE_CONFIG_GET, memcpy_fromio() could end up copying too many bytes. Fix by utilizing min_t().
CVE-2022-50329 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: block, bfq: fix uaf for bfqq in bfq_exit_icq_bfqq Commit 64dc8c732f5c ("block, bfq: fix possible uaf for 'bfqq->bic'") will access 'bic->bfqq' in bic_set_bfqq(), however, bfq_exit_icq_bfqq() can free bfqq first, and then call bic_set_bfqq(), which will cause uaf. Fix the problem by moving bfq_exit_bfqq() behind bic_set_bfqq().
CVE-2022-50330 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: crypto: cavium - prevent integer overflow loading firmware The "code_length" value comes from the firmware file. If your firmware is untrusted realistically there is probably very little you can do to protect yourself. Still we try to limit the damage as much as possible. Also Smatch marks any data read from the filesystem as untrusted and prints warnings if it not capped correctly. The "ntohl(ucode->code_length) * 2" multiplication can have an integer overflow.
CVE-2022-50333 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: fs: jfs: fix shift-out-of-bounds in dbDiscardAG This should be applied to most URSAN bugs found recently by syzbot, by guarding the dbMount. As syzbot feeding rubbish into the bmap descriptor.
CVE-2023-53148 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: igb: Fix igb_down hung on surprise removal In a setup where a Thunderbolt hub connects to Ethernet and a display through USB Type-C, users may experience a hung task timeout when they remove the cable between the PC and the Thunderbolt hub. This is because the igb_down function is called multiple times when the Thunderbolt hub is unplugged. For example, the igb_io_error_detected triggers the first call, and the igb_remove triggers the second call. The second call to igb_down will block at napi_synchronize. Here's the call trace: __schedule+0x3b0/0xddb ? __mod_timer+0x164/0x5d3 schedule+0x44/0xa8 schedule_timeout+0xb2/0x2a4 ? run_local_timers+0x4e/0x4e msleep+0x31/0x38 igb_down+0x12c/0x22a [igb 6615058754948bfde0bf01429257eb59f13030d4] __igb_close+0x6f/0x9c [igb 6615058754948bfde0bf01429257eb59f13030d4] igb_close+0x23/0x2b [igb 6615058754948bfde0bf01429257eb59f13030d4] __dev_close_many+0x95/0xec dev_close_many+0x6e/0x103 unregister_netdevice_many+0x105/0x5b1 unregister_netdevice_queue+0xc2/0x10d unregister_netdev+0x1c/0x23 igb_remove+0xa7/0x11c [igb 6615058754948bfde0bf01429257eb59f13030d4] pci_device_remove+0x3f/0x9c device_release_driver_internal+0xfe/0x1b4 pci_stop_bus_device+0x5b/0x7f pci_stop_bus_device+0x30/0x7f pci_stop_bus_device+0x30/0x7f pci_stop_and_remove_bus_device+0x12/0x19 pciehp_unconfigure_device+0x76/0xe9 pciehp_disable_slot+0x6e/0x131 pciehp_handle_presence_or_link_change+0x7a/0x3f7 pciehp_ist+0xbe/0x194 irq_thread_fn+0x22/0x4d ? irq_thread+0x1fd/0x1fd irq_thread+0x17b/0x1fd ? irq_forced_thread_fn+0x5f/0x5f kthread+0x142/0x153 ? __irq_get_irqchip_state+0x46/0x46 ? kthread_associate_blkcg+0x71/0x71 ret_from_fork+0x1f/0x30 In this case, igb_io_error_detected detaches the network interface and requests a PCIE slot reset, however, the PCIE reset callback is not being invoked and thus the Ethernet connection breaks down. As the PCIE error in this case is a non-fatal one, requesting a slot reset can be avoided. This patch fixes the task hung issue and preserves Ethernet connection by ignoring non-fatal PCIE errors.
CVE-2023-53152 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix calltrace warning in amddrm_buddy_fini The following call trace is observed when removing the amdgpu driver, which is caused by that BOs allocated for psp are not freed until removing. [61811.450562] RIP: 0010:amddrm_buddy_fini.cold+0x29/0x47 [amddrm_buddy] [61811.450577] Call Trace: [61811.450577] <TASK> [61811.450579] amdgpu_vram_mgr_fini+0x135/0x1c0 [amdgpu] [61811.450728] amdgpu_ttm_fini+0x207/0x290 [amdgpu] [61811.450870] amdgpu_bo_fini+0x27/0xa0 [amdgpu] [61811.451012] gmc_v9_0_sw_fini+0x4a/0x60 [amdgpu] [61811.451166] amdgpu_device_fini_sw+0x117/0x520 [amdgpu] [61811.451306] amdgpu_driver_release_kms+0x16/0x30 [amdgpu] [61811.451447] devm_drm_dev_init_release+0x4d/0x80 [drm] [61811.451466] devm_action_release+0x15/0x20 [61811.451469] release_nodes+0x40/0xb0 [61811.451471] devres_release_all+0x9b/0xd0 [61811.451473] __device_release_driver+0x1bb/0x2a0 [61811.451476] driver_detach+0xf3/0x140 [61811.451479] bus_remove_driver+0x6c/0xf0 [61811.451481] driver_unregister+0x31/0x60 [61811.451483] pci_unregister_driver+0x40/0x90 [61811.451486] amdgpu_exit+0x15/0x447 [amdgpu] For smu v13_0_2, if the GPU supports xgmi, refer to commit f5c7e7797060 ("drm/amdgpu: Adjust removal control flow for smu v13_0_2"), it will run gpu recover in AMDGPU_RESET_FOR_DEVICE_REMOVE mode when removing, which makes all devices in hive list have hw reset but no resume except the basic ip blocks, then other ip blocks will not call .hw_fini according to ip_block.status.hw. Since psp_free_shared_bufs just includes some software operations, so move it to psp_sw_fini.
CVE-2023-53167 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tracing: Fix null pointer dereference in tracing_err_log_open() Fix an issue in function 'tracing_err_log_open'. The function doesn't call 'seq_open' if the file is opened only with write permissions, which results in 'file->private_data' being left as null. If we then use 'lseek' on that opened file, 'seq_lseek' dereferences 'file->private_data' in 'mutex_lock(&m->lock)', resulting in a kernel panic. Writing to this node requires root privileges, therefore this bug has very little security impact. Tracefs node: /sys/kernel/tracing/error_log Example Kernel panic: Unable to handle kernel NULL pointer dereference at virtual address 0000000000000038 Call trace: mutex_lock+0x30/0x110 seq_lseek+0x34/0xb8 __arm64_sys_lseek+0x6c/0xb8 invoke_syscall+0x58/0x13c el0_svc_common+0xc4/0x10c do_el0_svc+0x24/0x98 el0_svc+0x24/0x88 el0t_64_sync_handler+0x84/0xe4 el0t_64_sync+0x1b4/0x1b8 Code: d503201f aa0803e0 aa1f03e1 aa0103e9 (c8e97d02) ---[ end trace 561d1b49c12cf8a5 ]--- Kernel panic - not syncing: Oops: Fatal exception
CVE-2023-53171 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: vfio/type1: prevent underflow of locked_vm via exec() When a vfio container is preserved across exec, the task does not change, but it gets a new mm with locked_vm=0, and loses the count from existing dma mappings. If the user later unmaps a dma mapping, locked_vm underflows to a large unsigned value, and a subsequent dma map request fails with ENOMEM in __account_locked_vm. To avoid underflow, grab and save the mm at the time a dma is mapped. Use that mm when adjusting locked_vm, rather than re-acquiring the saved task's mm, which may have changed. If the saved mm is dead, do nothing. locked_vm is incremented for existing mappings in a subsequent patch.
CVE-2023-53172 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: fsverity: reject FS_IOC_ENABLE_VERITY on mode 3 fds Commit 56124d6c87fd ("fsverity: support enabling with tree block size < PAGE_SIZE") changed FS_IOC_ENABLE_VERITY to use __kernel_read() to read the file's data, instead of direct pagecache accesses. An unintended consequence of this is that the 'WARN_ON_ONCE(!(file->f_mode & FMODE_READ))' in __kernel_read() became reachable by fuzz tests. This happens if FS_IOC_ENABLE_VERITY is called on a fd opened with access mode 3, which means "ioctl access only". Arguably, FS_IOC_ENABLE_VERITY should work on ioctl-only fds. But ioctl-only fds are a weird Linux extension that is rarely used and that few people even know about. (The documentation for FS_IOC_ENABLE_VERITY even specifically says it requires O_RDONLY.) It's probably not worthwhile to make the ioctl internally open a new fd just to handle this case. Thus, just reject the ioctl on such fds for now.
CVE-2023-53174 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: scsi: core: Fix possible memory leak if device_add() fails If device_add() returns error, the name allocated by dev_set_name() needs be freed. As the comment of device_add() says, put_device() should be used to decrease the reference count in the error path. So fix this by calling put_device(), then the name can be freed in kobject_cleanp().
CVE-2023-53175 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: PCI: hv: Fix a crash in hv_pci_restore_msi_msg() during hibernation When a Linux VM with an assigned PCI device runs on Hyper-V, if the PCI device driver is not loaded yet (i.e. MSI-X/MSI is not enabled on the device yet), doing a VM hibernation triggers a panic in hv_pci_restore_msi_msg() -> msi_lock_descs(&pdev->dev), because pdev->dev.msi.data is still NULL. Avoid the panic by checking if MSI-X/MSI is enabled.
CVE-2023-53181 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: dma-buf/dma-resv: Stop leaking on krealloc() failure Currently dma_resv_get_fences() will leak the previously allocated array if the fence iteration got restarted and the krealloc_array() fails. Free the old array by hand, and make sure we still clear the returned *fences so the caller won't end up accessing freed memory. Some (but not all) of the callers of dma_resv_get_fences() seem to still trawl through the array even when dma_resv_get_fences() failed. And let's zero out *num_fences as well for good measure.