Search

Search Results (309947 CVEs found)

CVE Vendors Products Updated CVSS v3.1
CVE-2022-50334 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: hugetlbfs: fix null-ptr-deref in hugetlbfs_parse_param() Syzkaller reports a null-ptr-deref bug as follows: ====================================================== KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] RIP: 0010:hugetlbfs_parse_param+0x1dd/0x8e0 fs/hugetlbfs/inode.c:1380 [...] Call Trace: <TASK> vfs_parse_fs_param fs/fs_context.c:148 [inline] vfs_parse_fs_param+0x1f9/0x3c0 fs/fs_context.c:129 vfs_parse_fs_string+0xdb/0x170 fs/fs_context.c:191 generic_parse_monolithic+0x16f/0x1f0 fs/fs_context.c:231 do_new_mount fs/namespace.c:3036 [inline] path_mount+0x12de/0x1e20 fs/namespace.c:3370 do_mount fs/namespace.c:3383 [inline] __do_sys_mount fs/namespace.c:3591 [inline] __se_sys_mount fs/namespace.c:3568 [inline] __x64_sys_mount+0x27f/0x300 fs/namespace.c:3568 do_syscall_x64 arch/x86/entry/common.c:50 [inline] do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80 entry_SYSCALL_64_after_hwframe+0x63/0xcd [...] </TASK> ====================================================== According to commit "vfs: parse: deal with zero length string value", kernel will set the param->string to null pointer in vfs_parse_fs_string() if fs string has zero length. Yet the problem is that, hugetlbfs_parse_param() will dereference the param->string, without checking whether it is a null pointer. To be more specific, if hugetlbfs_parse_param() parses an illegal mount parameter, such as "size=,", kernel will constructs struct fs_parameter with null pointer in vfs_parse_fs_string(), then passes this struct fs_parameter to hugetlbfs_parse_param(), which triggers the above null-ptr-deref bug. This patch solves it by adding sanity check on param->string in hugetlbfs_parse_param().
CVE-2022-50335 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: 9p: set req refcount to zero to avoid uninitialized usage When a new request is allocated, the refcount will be zero if it is reused, but if the request is newly allocated from slab, it is not fully initialized before being added to idr. If the p9_read_work got a response before the refcount initiated. It will use a uninitialized req, which will result in a bad request data struct. Here is the logs from syzbot. Corrupted memory at 0xffff88807eade00b [ 0xff 0x07 0x00 0x00 0x00 0x00 0x00 0x00 . . . . . . . . ] (in kfence-#110): p9_fcall_fini net/9p/client.c:248 [inline] p9_req_put net/9p/client.c:396 [inline] p9_req_put+0x208/0x250 net/9p/client.c:390 p9_client_walk+0x247/0x540 net/9p/client.c:1165 clone_fid fs/9p/fid.h:21 [inline] v9fs_fid_xattr_set+0xe4/0x2b0 fs/9p/xattr.c:118 v9fs_xattr_set fs/9p/xattr.c:100 [inline] v9fs_xattr_handler_set+0x6f/0x120 fs/9p/xattr.c:159 __vfs_setxattr+0x119/0x180 fs/xattr.c:182 __vfs_setxattr_noperm+0x129/0x5f0 fs/xattr.c:216 __vfs_setxattr_locked+0x1d3/0x260 fs/xattr.c:277 vfs_setxattr+0x143/0x340 fs/xattr.c:309 setxattr+0x146/0x160 fs/xattr.c:617 path_setxattr+0x197/0x1c0 fs/xattr.c:636 __do_sys_setxattr fs/xattr.c:652 [inline] __se_sys_setxattr fs/xattr.c:648 [inline] __ia32_sys_setxattr+0xc0/0x160 fs/xattr.c:648 do_syscall_32_irqs_on arch/x86/entry/common.c:112 [inline] __do_fast_syscall_32+0x65/0xf0 arch/x86/entry/common.c:178 do_fast_syscall_32+0x33/0x70 arch/x86/entry/common.c:203 entry_SYSENTER_compat_after_hwframe+0x70/0x82 Below is a similar scenario, the scenario in the syzbot log looks more complicated than this one, but this patch can fix it. T21124 p9_read_work ======================== second trans ================================= p9_client_walk p9_client_rpc p9_client_prepare_req p9_tag_alloc req = kmem_cache_alloc(p9_req_cache, GFP_NOFS); tag = idr_alloc << preempted >> req->tc.tag = tag; /* req->[refcount/tag] == uninitialized */ m->rreq = p9_tag_lookup(m->client, m->rc.tag); /* increments uninitalized refcount */ refcount_set(&req->refcount, 2); /* cb drops one ref */ p9_client_cb(req) /* reader thread drops its ref: request is incorrectly freed */ p9_req_put(req) /* use after free and ref underflow */ p9_req_put(req) To fix it, we can initialize the refcount to zero before add to idr.
CVE-2023-53149 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ext4: avoid deadlock in fs reclaim with page writeback Ext4 has a filesystem wide lock protecting ext4_writepages() calls to avoid races with switching of journalled data flag or inode format. This lock can however cause a deadlock like: CPU0 CPU1 ext4_writepages() percpu_down_read(sbi->s_writepages_rwsem); ext4_change_inode_journal_flag() percpu_down_write(sbi->s_writepages_rwsem); - blocks, all readers block from now on ext4_do_writepages() ext4_init_io_end() kmem_cache_zalloc(io_end_cachep, GFP_KERNEL) fs_reclaim frees dentry... dentry_unlink_inode() iput() - last ref => iput_final() - inode dirty => write_inode_now()... ext4_writepages() tries to acquire sbi->s_writepages_rwsem and blocks forever Make sure we cannot recurse into filesystem reclaim from writeback code to avoid the deadlock.
CVE-2023-53151 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: md/raid10: prevent soft lockup while flush writes Currently, there is no limit for raid1/raid10 plugged bio. While flushing writes, raid1 has cond_resched() while raid10 doesn't, and too many writes can cause soft lockup. Follow up soft lockup can be triggered easily with writeback test for raid10 with ramdisks: watchdog: BUG: soft lockup - CPU#10 stuck for 27s! [md0_raid10:1293] Call Trace: <TASK> call_rcu+0x16/0x20 put_object+0x41/0x80 __delete_object+0x50/0x90 delete_object_full+0x2b/0x40 kmemleak_free+0x46/0xa0 slab_free_freelist_hook.constprop.0+0xed/0x1a0 kmem_cache_free+0xfd/0x300 mempool_free_slab+0x1f/0x30 mempool_free+0x3a/0x100 bio_free+0x59/0x80 bio_put+0xcf/0x2c0 free_r10bio+0xbf/0xf0 raid_end_bio_io+0x78/0xb0 one_write_done+0x8a/0xa0 raid10_end_write_request+0x1b4/0x430 bio_endio+0x175/0x320 brd_submit_bio+0x3b9/0x9b7 [brd] __submit_bio+0x69/0xe0 submit_bio_noacct_nocheck+0x1e6/0x5a0 submit_bio_noacct+0x38c/0x7e0 flush_pending_writes+0xf0/0x240 raid10d+0xac/0x1ed0 Fix the problem by adding cond_resched() to raid10 like what raid1 did. Note that unlimited plugged bio still need to be optimized, for example, in the case of lots of dirty pages writeback, this will take lots of memory and io will spend a long time in plug, hence io latency is bad.
CVE-2023-53153 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: wifi: cfg80211: Fix use after free for wext Key information in wext.connect is not reset on (re)connect and can hold data from a previous connection. Reset key data to avoid that drivers or mac80211 incorrectly detect a WEP connection request and access the freed or already reused memory. Additionally optimize cfg80211_sme_connect() and avoid an useless schedule of conn_work.
CVE-2023-53169 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: x86/resctrl: Clear staged_config[] before and after it is used As a temporary storage, staged_config[] in rdt_domain should be cleared before and after it is used. The stale value in staged_config[] could cause an MSR access error. Here is a reproducer on a system with 16 usable CLOSIDs for a 15-way L3 Cache (MBA should be disabled if the number of CLOSIDs for MB is less than 16.) : mount -t resctrl resctrl -o cdp /sys/fs/resctrl mkdir /sys/fs/resctrl/p{1..7} umount /sys/fs/resctrl/ mount -t resctrl resctrl /sys/fs/resctrl mkdir /sys/fs/resctrl/p{1..8} An error occurs when creating resource group named p8: unchecked MSR access error: WRMSR to 0xca0 (tried to write 0x00000000000007ff) at rIP: 0xffffffff82249142 (cat_wrmsr+0x32/0x60) Call Trace: <IRQ> __flush_smp_call_function_queue+0x11d/0x170 __sysvec_call_function+0x24/0xd0 sysvec_call_function+0x89/0xc0 </IRQ> <TASK> asm_sysvec_call_function+0x16/0x20 When creating a new resource control group, hardware will be configured by the following process: rdtgroup_mkdir() rdtgroup_mkdir_ctrl_mon() rdtgroup_init_alloc() resctrl_arch_update_domains() resctrl_arch_update_domains() iterates and updates all resctrl_conf_type whose have_new_ctrl is true. Since staged_config[] holds the same values as when CDP was enabled, it will continue to update the CDP_CODE and CDP_DATA configurations. When group p8 is created, get_config_index() called in resctrl_arch_update_domains() will return 16 and 17 as the CLOSIDs for CDP_CODE and CDP_DATA, which will be translated to an invalid register - 0xca0 in this scenario. Fix it by clearing staged_config[] before and after it is used. [reinette: re-order commit tags]
CVE-2023-53173 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: tty: pcn_uart: fix memory leak with using debugfs_lookup() When calling debugfs_lookup() the result must have dput() called on it, otherwise the memory will leak over time. To make things simpler, just call debugfs_lookup_and_remove() instead which handles all of the logic at once.
CVE-2023-53166 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: power: supply: bq25890: Fix external_power_changed race bq25890_charger_external_power_changed() dereferences bq->charger, which gets sets in bq25890_power_supply_init() like this: bq->charger = devm_power_supply_register(bq->dev, &bq->desc, &psy_cfg); As soon as devm_power_supply_register() has called device_add() the external_power_changed callback can get called. So there is a window where bq25890_charger_external_power_changed() may get called while bq->charger has not been set yet leading to a NULL pointer dereference. This race hits during boot sometimes on a Lenovo Yoga Book 1 yb1-x90f when the cht_wcove_pwrsrc (extcon) power_supply is done with detecting the connected charger-type which happens to exactly hit the small window: BUG: kernel NULL pointer dereference, address: 0000000000000018 <snip> RIP: 0010:__power_supply_is_supplied_by+0xb/0xb0 <snip> Call Trace: <TASK> __power_supply_get_supplier_property+0x19/0x50 class_for_each_device+0xb1/0xe0 power_supply_get_property_from_supplier+0x2e/0x50 bq25890_charger_external_power_changed+0x38/0x1b0 [bq25890_charger] __power_supply_changed_work+0x30/0x40 class_for_each_device+0xb1/0xe0 power_supply_changed_work+0x5f/0xe0 <snip> Fixing this is easy. The external_power_changed callback gets passed the power_supply which will eventually get stored in bq->charger, so bq25890_charger_external_power_changed() can simply directly use the passed in psy argument which is always valid.
CVE-2023-53176 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: serial: 8250: Reinit port->pm on port specific driver unbind When we unbind a serial port hardware specific 8250 driver, the generic serial8250 driver takes over the port. After that we see an oops about 10 seconds later. This can produce the following at least on some TI SoCs: Unhandled fault: imprecise external abort (0x1406) Internal error: : 1406 [#1] SMP ARM Turns out that we may still have the serial port hardware specific driver port->pm in use, and serial8250_pm() tries to call it after the port specific driver is gone: serial8250_pm [8250_base] from uart_change_pm+0x54/0x8c [serial_base] uart_change_pm [serial_base] from uart_hangup+0x154/0x198 [serial_base] uart_hangup [serial_base] from __tty_hangup.part.0+0x328/0x37c __tty_hangup.part.0 from disassociate_ctty+0x154/0x20c disassociate_ctty from do_exit+0x744/0xaac do_exit from do_group_exit+0x40/0x8c do_group_exit from __wake_up_parent+0x0/0x1c Let's fix the issue by calling serial8250_set_defaults() in serial8250_unregister_port(). This will set the port back to using the serial8250 default functions, and sets the port->pm to point to serial8250_pm.
CVE-2023-53177 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: media: hi846: fix usage of pm_runtime_get_if_in_use() pm_runtime_get_if_in_use() does not only return nonzero values when the device is in use, it can return a negative errno too. And especially during resuming from system suspend, when runtime pm is not yet up again, -EAGAIN is being returned, so the subsequent pm_runtime_put() call results in a refcount underflow. Fix system-resume by handling -EAGAIN of pm_runtime_get_if_in_use().
CVE-2023-53182 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: ACPICA: Avoid undefined behavior: applying zero offset to null pointer ACPICA commit 770653e3ba67c30a629ca7d12e352d83c2541b1e Before this change we see the following UBSAN stack trace in Fuchsia: #0 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302 #1.2 0x000020d0f660777f in ubsan_get_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:41 <libclang_rt.asan.so>+0x3d77f #1.1 0x000020d0f660777f in maybe_print_stack_trace() compiler-rt/lib/ubsan/ubsan_diag.cpp:51 <libclang_rt.asan.so>+0x3d77f #1 0x000020d0f660777f in ~scoped_report() compiler-rt/lib/ubsan/ubsan_diag.cpp:387 <libclang_rt.asan.so>+0x3d77f #2 0x000020d0f660b96d in handlepointer_overflow_impl() compiler-rt/lib/ubsan/ubsan_handlers.cpp:809 <libclang_rt.asan.so>+0x4196d #3 0x000020d0f660b50d in compiler-rt/lib/ubsan/ubsan_handlers.cpp:815 <libclang_rt.asan.so>+0x4150d #4 0x000021e4213b3302 in acpi_ds_init_aml_walk(struct acpi_walk_state*, union acpi_parse_object*, struct acpi_namespace_node*, u8*, u32, struct acpi_evaluate_info*, u8) ../../third_party/acpica/source/components/dispatcher/dswstate.c:682 <platform-bus-x86.so>+0x233302 #5 0x000021e4213e2369 in acpi_ds_call_control_method(struct acpi_thread_state*, struct acpi_walk_state*, union acpi_parse_object*) ../../third_party/acpica/source/components/dispatcher/dsmethod.c:605 <platform-bus-x86.so>+0x262369 #6 0x000021e421437fac in acpi_ps_parse_aml(struct acpi_walk_state*) ../../third_party/acpica/source/components/parser/psparse.c:550 <platform-bus-x86.so>+0x2b7fac #7 0x000021e4214464d2 in acpi_ps_execute_method(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/parser/psxface.c:244 <platform-bus-x86.so>+0x2c64d2 #8 0x000021e4213aa052 in acpi_ns_evaluate(struct acpi_evaluate_info*) ../../third_party/acpica/source/components/namespace/nseval.c:250 <platform-bus-x86.so>+0x22a052 #9 0x000021e421413dd8 in acpi_ns_init_one_device(acpi_handle, u32, void*, void**) ../../third_party/acpica/source/components/namespace/nsinit.c:735 <platform-bus-x86.so>+0x293dd8 #10 0x000021e421429e98 in acpi_ns_walk_namespace(acpi_object_type, acpi_handle, u32, u32, acpi_walk_callback, acpi_walk_callback, void*, void**) ../../third_party/acpica/source/components/namespace/nswalk.c:298 <platform-bus-x86.so>+0x2a9e98 #11 0x000021e4214131ac in acpi_ns_initialize_devices(u32) ../../third_party/acpica/source/components/namespace/nsinit.c:268 <platform-bus-x86.so>+0x2931ac #12 0x000021e42147c40d in acpi_initialize_objects(u32) ../../third_party/acpica/source/components/utilities/utxfinit.c:304 <platform-bus-x86.so>+0x2fc40d #13 0x000021e42126d603 in acpi::acpi_impl::initialize_acpi(acpi::acpi_impl*) ../../src/devices/board/lib/acpi/acpi-impl.cc:224 <platform-bus-x86.so>+0xed603 Add a simple check that avoids incrementing a pointer by zero, but otherwise behaves as before. Note that our findings are against ACPICA 20221020, but the same code exists on master.
CVE-2023-53183 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: btrfs: exit gracefully if reloc roots don't match [BUG] Syzbot reported a crash that an ASSERT() got triggered inside prepare_to_merge(). [CAUSE] The root cause of the triggered ASSERT() is we can have a race between quota tree creation and relocation. This leads us to create a duplicated quota tree in the btrfs_read_fs_root() path, and since it's treated as fs tree, it would have ROOT_SHAREABLE flag, causing us to create a reloc tree for it. The bug itself is fixed by a dedicated patch for it, but this already taught us the ASSERT() is not something straightforward for developers. [ENHANCEMENT] Instead of using an ASSERT(), let's handle it gracefully and output extra info about the mismatch reloc roots to help debug. Also with the above ASSERT() removed, we can trigger ASSERT(0)s inside merge_reloc_roots() later. Also replace those ASSERT(0)s with WARN_ON()s.
CVE-2023-53184 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: arm64/sme: Set new vector length before reallocating As part of fixing the allocation of the buffer for SVE state when changing SME vector length we introduced an immediate reallocation of the SVE state, this is also done when changing the SVE vector length for consistency. Unfortunately this reallocation is done prior to writing the new vector length to the task struct, meaning the allocation is done with the old vector length and can lead to memory corruption due to an undersized buffer being used. Move the update of the vector length before the allocation to ensure that the new vector length is taken into account. For some reason this isn't triggering any problems when running tests on the arm64 fixes branch (even after repeated tries) but is triggering issues very often after merge into mainline.
CVE-2023-53189 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: ipv6/addrconf: fix a potential refcount underflow for idev Now in addrconf_mod_rs_timer(), reference idev depends on whether rs_timer is not pending. Then modify rs_timer timeout. There is a time gap in [1], during which if the pending rs_timer becomes not pending. It will miss to hold idev, but the rs_timer is activated. Thus rs_timer callback function addrconf_rs_timer() will be executed and put idev later without holding idev. A refcount underflow issue for idev can be caused by this. if (!timer_pending(&idev->rs_timer)) in6_dev_hold(idev); <--------------[1] mod_timer(&idev->rs_timer, jiffies + when); To fix the issue, hold idev if mod_timer() return 0.
CVE-2023-53193 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: drm/amdgpu: fix amdgpu_irq_put call trace in gmc_v10_0_hw_fini The gmc.ecc_irq is enabled by firmware per IFWI setting, and the host driver is not privileged to enable/disable the interrupt. So, it is meaningless to use the amdgpu_irq_put function in gmc_v10_0_hw_fini, which also leads to the call trace. [ 82.340264] Call Trace: [ 82.340265] <TASK> [ 82.340269] gmc_v10_0_hw_fini+0x83/0xa0 [amdgpu] [ 82.340447] gmc_v10_0_suspend+0xe/0x20 [amdgpu] [ 82.340623] amdgpu_device_ip_suspend_phase2+0x127/0x1c0 [amdgpu] [ 82.340789] amdgpu_device_ip_suspend+0x3d/0x80 [amdgpu] [ 82.340955] amdgpu_device_pre_asic_reset+0xdd/0x2b0 [amdgpu] [ 82.341122] amdgpu_device_gpu_recover.cold+0x4dd/0xbb2 [amdgpu] [ 82.341359] amdgpu_debugfs_reset_work+0x4c/0x70 [amdgpu] [ 82.341529] process_one_work+0x21d/0x3f0 [ 82.341535] worker_thread+0x1fa/0x3c0 [ 82.341538] ? process_one_work+0x3f0/0x3f0 [ 82.341540] kthread+0xff/0x130 [ 82.341544] ? kthread_complete_and_exit+0x20/0x20 [ 82.341547] ret_from_fork+0x22/0x30
CVE-2023-53195 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: mlxsw: minimal: fix potential memory leak in mlxsw_m_linecards_init The line cards array is not freed in the error path of mlxsw_m_linecards_init(), which can lead to a memory leak. Fix by freeing the array in the error path, thereby making the error path identical to mlxsw_m_linecards_fini().
CVE-2023-53200 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: netfilter: x_tables: fix percpu counter block leak on error path when creating new netns Here is the stack where we allocate percpu counter block: +-< __alloc_percpu +-< xt_percpu_counter_alloc +-< find_check_entry # {arp,ip,ip6}_tables.c +-< translate_table And it can be leaked on this code path: +-> ip6t_register_table +-> translate_table # allocates percpu counter block +-> xt_register_table # fails there is no freeing of the counter block on xt_register_table fail. Note: xt_percpu_counter_free should be called to free it like we do in do_replace through cleanup_entry helper (or in __ip6t_unregister_table). Probability of hitting this error path is low AFAICS (xt_register_table can only return ENOMEM here, as it is not replacing anything, as we are creating new netns, and it is hard to imagine that all previous allocations succeeded and after that one in xt_register_table failed). But it's worth fixing even the rare leak.
CVE-2023-53201 2025-09-15 7.0 High
In the Linux kernel, the following vulnerability has been resolved: RDMA/bnxt_re: wraparound mbox producer index Driver is not handling the wraparound of the mbox producer index correctly. Currently the wraparound happens once u32 max is reached. Bit 31 of the producer index register is special and should be set only once for the first command. Because the producer index overflow setting bit31 after a long time, FW goes to initialization sequence and this causes FW hang. Fix is to wraparound the mbox producer index once it reaches u16 max.
CVE-2023-53241 2025-09-15 N/A
In the Linux kernel, the following vulnerability has been resolved: nfsd: call op_release, even when op_func returns an error For ops with "trivial" replies, nfsd4_encode_operation will shortcut most of the encoding work and skip to just marshalling up the status. One of the things it skips is calling op_release. This could cause a memory leak in the layoutget codepath if there is an error at an inopportune time. Have the compound processing engine always call op_release, even when op_func sets an error in op->status. With this change, we also need nfsd4_block_get_device_info_scsi to set the gd_device pointer to NULL on error to avoid a double free.
CVE-2023-53238 2025-09-15 5.5 Medium
In the Linux kernel, the following vulnerability has been resolved: phy: hisilicon: Fix an out of bounds check in hisi_inno_phy_probe() The size of array 'priv->ports[]' is INNO_PHY_PORT_NUM. In the for loop, 'i' is used as the index for array 'priv->ports[]' with a check (i > INNO_PHY_PORT_NUM) which indicates that INNO_PHY_PORT_NUM is allowed value for 'i' in the same loop. This > comparison needs to be changed to >=, otherwise it potentially leads to an out of bounds write on the next iteration through the loop