| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
neighbour: use RCU protection in __neigh_notify()
__neigh_notify() can be called without RTNL or RCU protection.
Use RCU protection to avoid potential UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
arp: use RCU protection in arp_xmit()
arp_xmit() can be called without RTNL or RCU protection.
Use RCU protection to avoid potential UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
openvswitch: use RCU protection in ovs_vport_cmd_fill_info()
ovs_vport_cmd_fill_info() can be called without RTNL or RCU.
Use RCU protection and dev_net_rcu() to avoid potential UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
ndisc: extend RCU protection in ndisc_send_skb()
ndisc_send_skb() can be called without RTNL or RCU held.
Acquire rcu_read_lock() earlier, so that we can use dev_net_rcu()
and avoid a potential UAF. |
| In the Linux kernel, the following vulnerability has been resolved:
vsock: Keep the binding until socket destruction
Preserve sockets bindings; this includes both resulting from an explicit
bind() and those implicitly bound through autobind during connect().
Prevents socket unbinding during a transport reassignment, which fixes a
use-after-free:
1. vsock_create() (refcnt=1) calls vsock_insert_unbound() (refcnt=2)
2. transport->release() calls vsock_remove_bound() without checking if
sk was bound and moved to bound list (refcnt=1)
3. vsock_bind() assumes sk is in unbound list and before
__vsock_insert_bound(vsock_bound_sockets()) calls
__vsock_remove_bound() which does:
list_del_init(&vsk->bound_table); // nop
sock_put(&vsk->sk); // refcnt=0
BUG: KASAN: slab-use-after-free in __vsock_bind+0x62e/0x730
Read of size 4 at addr ffff88816b46a74c by task a.out/2057
dump_stack_lvl+0x68/0x90
print_report+0x174/0x4f6
kasan_report+0xb9/0x190
__vsock_bind+0x62e/0x730
vsock_bind+0x97/0xe0
__sys_bind+0x154/0x1f0
__x64_sys_bind+0x6e/0xb0
do_syscall_64+0x93/0x1b0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Allocated by task 2057:
kasan_save_stack+0x1e/0x40
kasan_save_track+0x10/0x30
__kasan_slab_alloc+0x85/0x90
kmem_cache_alloc_noprof+0x131/0x450
sk_prot_alloc+0x5b/0x220
sk_alloc+0x2c/0x870
__vsock_create.constprop.0+0x2e/0xb60
vsock_create+0xe4/0x420
__sock_create+0x241/0x650
__sys_socket+0xf2/0x1a0
__x64_sys_socket+0x6e/0xb0
do_syscall_64+0x93/0x1b0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 2057:
kasan_save_stack+0x1e/0x40
kasan_save_track+0x10/0x30
kasan_save_free_info+0x37/0x60
__kasan_slab_free+0x4b/0x70
kmem_cache_free+0x1a1/0x590
__sk_destruct+0x388/0x5a0
__vsock_bind+0x5e1/0x730
vsock_bind+0x97/0xe0
__sys_bind+0x154/0x1f0
__x64_sys_bind+0x6e/0xb0
do_syscall_64+0x93/0x1b0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 7 PID: 2057 at lib/refcount.c:25 refcount_warn_saturate+0xce/0x150
RIP: 0010:refcount_warn_saturate+0xce/0x150
__vsock_bind+0x66d/0x730
vsock_bind+0x97/0xe0
__sys_bind+0x154/0x1f0
__x64_sys_bind+0x6e/0xb0
do_syscall_64+0x93/0x1b0
entry_SYSCALL_64_after_hwframe+0x76/0x7e
refcount_t: underflow; use-after-free.
WARNING: CPU: 7 PID: 2057 at lib/refcount.c:28 refcount_warn_saturate+0xee/0x150
RIP: 0010:refcount_warn_saturate+0xee/0x150
vsock_remove_bound+0x187/0x1e0
__vsock_release+0x383/0x4a0
vsock_release+0x90/0x120
__sock_release+0xa3/0x250
sock_close+0x14/0x20
__fput+0x359/0xa80
task_work_run+0x107/0x1d0
do_exit+0x847/0x2560
do_group_exit+0xb8/0x250
__x64_sys_exit_group+0x3a/0x50
x64_sys_call+0xfec/0x14f0
do_syscall_64+0x93/0x1b0
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix use-after-free when attempting to join an aborted transaction
When we are trying to join the current transaction and if it's aborted,
we read its 'aborted' field after unlocking fs_info->trans_lock and
without holding any extra reference count on it. This means that a
concurrent task that is aborting the transaction may free the transaction
before we read its 'aborted' field, leading to a use-after-free.
Fix this by reading the 'aborted' field while holding fs_info->trans_lock
since any freeing task must first acquire that lock and set
fs_info->running_transaction to NULL before freeing the transaction.
This was reported by syzbot and Dmitry with the following stack traces
from KASAN:
==================================================================
BUG: KASAN: slab-use-after-free in join_transaction+0xd9b/0xda0 fs/btrfs/transaction.c:278
Read of size 4 at addr ffff888011839024 by task kworker/u4:9/1128
CPU: 0 UID: 0 PID: 1128 Comm: kworker/u4:9 Not tainted 6.13.0-rc7-syzkaller-00019-gc45323b7560e #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Workqueue: events_unbound btrfs_async_reclaim_data_space
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
join_transaction+0xd9b/0xda0 fs/btrfs/transaction.c:278
start_transaction+0xaf8/0x1670 fs/btrfs/transaction.c:697
flush_space+0x448/0xcf0 fs/btrfs/space-info.c:803
btrfs_async_reclaim_data_space+0x159/0x510 fs/btrfs/space-info.c:1321
process_one_work kernel/workqueue.c:3236 [inline]
process_scheduled_works+0xa66/0x1840 kernel/workqueue.c:3317
worker_thread+0x870/0xd30 kernel/workqueue.c:3398
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Allocated by task 5315:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4329
kmalloc_noprof include/linux/slab.h:901 [inline]
join_transaction+0x144/0xda0 fs/btrfs/transaction.c:308
start_transaction+0xaf8/0x1670 fs/btrfs/transaction.c:697
btrfs_create_common+0x1b2/0x2e0 fs/btrfs/inode.c:6572
lookup_open fs/namei.c:3649 [inline]
open_last_lookups fs/namei.c:3748 [inline]
path_openat+0x1c03/0x3590 fs/namei.c:3984
do_filp_open+0x27f/0x4e0 fs/namei.c:4014
do_sys_openat2+0x13e/0x1d0 fs/open.c:1402
do_sys_open fs/open.c:1417 [inline]
__do_sys_creat fs/open.c:1495 [inline]
__se_sys_creat fs/open.c:1489 [inline]
__x64_sys_creat+0x123/0x170 fs/open.c:1489
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
Freed by task 5336:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
kasan_save_free_info+0x40/0x50 mm/kasan/generic.c:582
poison_slab_object mm/kasan/common.c:247 [inline]
__kasan_slab_free+0x59/0x70 mm/kasan/common.c:264
kasan_slab_free include/linux/kasan.h:233 [inline]
slab_free_hook mm/slub.c:2353 [inline]
slab_free mm/slub.c:4613 [inline]
kfree+0x196/0x430 mm/slub.c:4761
cleanup_transaction fs/btrfs/transaction.c:2063 [inline]
btrfs_commit_transaction+0x2c97/0x3720 fs/btrfs/transaction.c:2598
insert_balance_item+0x1284/0x20b0 fs/btrfs/volumes.c:3757
btrfs_balance+0x992/
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
nbd: don't allow reconnect after disconnect
Following process can cause nbd_config UAF:
1) grab nbd_config temporarily;
2) nbd_genl_disconnect() flush all recv_work() and release the
initial reference:
nbd_genl_disconnect
nbd_disconnect_and_put
nbd_disconnect
flush_workqueue(nbd->recv_workq)
if (test_and_clear_bit(NBD_RT_HAS_CONFIG_REF, ...))
nbd_config_put
-> due to step 1), reference is still not zero
3) nbd_genl_reconfigure() queue recv_work() again;
nbd_genl_reconfigure
config = nbd_get_config_unlocked(nbd)
if (!config)
-> succeed
if (!test_bit(NBD_RT_BOUND, ...))
-> succeed
nbd_reconnect_socket
queue_work(nbd->recv_workq, &args->work)
4) step 1) release the reference;
5) Finially, recv_work() will trigger UAF:
recv_work
nbd_config_put(nbd)
-> nbd_config is freed
atomic_dec(&config->recv_threads)
-> UAF
Fix the problem by clearing NBD_RT_BOUND in nbd_genl_disconnect(), so
that nbd_genl_reconfigure() will fail. |
| In the Linux kernel, the following vulnerability has been resolved:
padata: fix UAF in padata_reorder
A bug was found when run ltp test:
BUG: KASAN: slab-use-after-free in padata_find_next+0x29/0x1a0
Read of size 4 at addr ffff88bbfe003524 by task kworker/u113:2/3039206
CPU: 0 PID: 3039206 Comm: kworker/u113:2 Kdump: loaded Not tainted 6.6.0+
Workqueue: pdecrypt_parallel padata_parallel_worker
Call Trace:
<TASK>
dump_stack_lvl+0x32/0x50
print_address_description.constprop.0+0x6b/0x3d0
print_report+0xdd/0x2c0
kasan_report+0xa5/0xd0
padata_find_next+0x29/0x1a0
padata_reorder+0x131/0x220
padata_parallel_worker+0x3d/0xc0
process_one_work+0x2ec/0x5a0
If 'mdelay(10)' is added before calling 'padata_find_next' in the
'padata_reorder' function, this issue could be reproduced easily with
ltp test (pcrypt_aead01).
This can be explained as bellow:
pcrypt_aead_encrypt
...
padata_do_parallel
refcount_inc(&pd->refcnt); // add refcnt
...
padata_do_serial
padata_reorder // pd
while (1) {
padata_find_next(pd, true); // using pd
queue_work_on
...
padata_serial_worker crypto_del_alg
padata_put_pd_cnt // sub refcnt
padata_free_shell
padata_put_pd(ps->pd);
// pd is freed
// loop again, but pd is freed
// call padata_find_next, UAF
}
In the padata_reorder function, when it loops in 'while', if the alg is
deleted, the refcnt may be decreased to 0 before entering
'padata_find_next', which leads to UAF.
As mentioned in [1], do_serial is supposed to be called with BHs disabled
and always happen under RCU protection, to address this issue, add
synchronize_rcu() in 'padata_free_shell' wait for all _do_serial calls
to finish.
[1] https://lore.kernel.org/all/20221028160401.cccypv4euxikusiq@parnassus.localdomain/
[2] https://lore.kernel.org/linux-kernel/jfjz5d7zwbytztackem7ibzalm5lnxldi2eofeiczqmqs2m7o6@fq426cwnjtkm/ |
| In the Linux kernel, the following vulnerability has been resolved:
padata: avoid UAF for reorder_work
Although the previous patch can avoid ps and ps UAF for _do_serial, it
can not avoid potential UAF issue for reorder_work. This issue can
happen just as below:
crypto_request crypto_request crypto_del_alg
padata_do_serial
...
padata_reorder
// processes all remaining
// requests then breaks
while (1) {
if (!padata)
break;
...
}
padata_do_serial
// new request added
list_add
// sees the new request
queue_work(reorder_work)
padata_reorder
queue_work_on(squeue->work)
...
<kworker context>
padata_serial_worker
// completes new request,
// no more outstanding
// requests
crypto_del_alg
// free pd
<kworker context>
invoke_padata_reorder
// UAF of pd
To avoid UAF for 'reorder_work', get 'pd' ref before put 'reorder_work'
into the 'serial_wq' and put 'pd' ref until the 'serial_wq' finish. |
| In the Linux kernel, the following vulnerability has been resolved:
nilfs2: do not force clear folio if buffer is referenced
Patch series "nilfs2: protect busy buffer heads from being force-cleared".
This series fixes the buffer head state inconsistency issues reported by
syzbot that occurs when the filesystem is corrupted and falls back to
read-only, and the associated buffer head use-after-free issue.
This patch (of 2):
Syzbot has reported that after nilfs2 detects filesystem corruption and
falls back to read-only, inconsistencies in the buffer state may occur.
One of the inconsistencies is that when nilfs2 calls mark_buffer_dirty()
to set a data or metadata buffer as dirty, but it detects that the buffer
is not in the uptodate state:
WARNING: CPU: 0 PID: 6049 at fs/buffer.c:1177 mark_buffer_dirty+0x2e5/0x520
fs/buffer.c:1177
...
Call Trace:
<TASK>
nilfs_palloc_commit_alloc_entry+0x4b/0x160 fs/nilfs2/alloc.c:598
nilfs_ifile_create_inode+0x1dd/0x3a0 fs/nilfs2/ifile.c:73
nilfs_new_inode+0x254/0x830 fs/nilfs2/inode.c:344
nilfs_mkdir+0x10d/0x340 fs/nilfs2/namei.c:218
vfs_mkdir+0x2f9/0x4f0 fs/namei.c:4257
do_mkdirat+0x264/0x3a0 fs/namei.c:4280
__do_sys_mkdirat fs/namei.c:4295 [inline]
__se_sys_mkdirat fs/namei.c:4293 [inline]
__x64_sys_mkdirat+0x87/0xa0 fs/namei.c:4293
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The other is when nilfs_btree_propagate(), which propagates the dirty
state to the ancestor nodes of a b-tree that point to a dirty buffer,
detects that the origin buffer is not dirty, even though it should be:
WARNING: CPU: 0 PID: 5245 at fs/nilfs2/btree.c:2089
nilfs_btree_propagate+0xc79/0xdf0 fs/nilfs2/btree.c:2089
...
Call Trace:
<TASK>
nilfs_bmap_propagate+0x75/0x120 fs/nilfs2/bmap.c:345
nilfs_collect_file_data+0x4d/0xd0 fs/nilfs2/segment.c:587
nilfs_segctor_apply_buffers+0x184/0x340 fs/nilfs2/segment.c:1006
nilfs_segctor_scan_file+0x28c/0xa50 fs/nilfs2/segment.c:1045
nilfs_segctor_collect_blocks fs/nilfs2/segment.c:1216 [inline]
nilfs_segctor_collect fs/nilfs2/segment.c:1540 [inline]
nilfs_segctor_do_construct+0x1c28/0x6b90 fs/nilfs2/segment.c:2115
nilfs_segctor_construct+0x181/0x6b0 fs/nilfs2/segment.c:2479
nilfs_segctor_thread_construct fs/nilfs2/segment.c:2587 [inline]
nilfs_segctor_thread+0x69e/0xe80 fs/nilfs2/segment.c:2701
kthread+0x2f0/0x390 kernel/kthread.c:389
ret_from_fork+0x4b/0x80 arch/x86/kernel/process.c:147
ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:244
</TASK>
Both of these issues are caused by the callbacks that handle the
page/folio write requests, forcibly clear various states, including the
working state of the buffers they hold, at unexpected times when they
detect read-only fallback.
Fix these issues by checking if the buffer is referenced before clearing
the page/folio state, and skipping the clear if it is. |
| In the Linux kernel, the following vulnerability has been resolved:
net: rose: fix timer races against user threads
Rose timers only acquire the socket spinlock, without
checking if the socket is owned by one user thread.
Add a check and rearm the timers if needed.
BUG: KASAN: slab-use-after-free in rose_timer_expiry+0x31d/0x360 net/rose/rose_timer.c:174
Read of size 2 at addr ffff88802f09b82a by task swapper/0/0
CPU: 0 UID: 0 PID: 0 Comm: swapper/0 Not tainted 6.13.0-rc5-syzkaller-00172-gd1bf27c4e176 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 09/13/2024
Call Trace:
<IRQ>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
rose_timer_expiry+0x31d/0x360 net/rose/rose_timer.c:174
call_timer_fn+0x187/0x650 kernel/time/timer.c:1793
expire_timers kernel/time/timer.c:1844 [inline]
__run_timers kernel/time/timer.c:2418 [inline]
__run_timer_base+0x66a/0x8e0 kernel/time/timer.c:2430
run_timer_base kernel/time/timer.c:2439 [inline]
run_timer_softirq+0xb7/0x170 kernel/time/timer.c:2449
handle_softirqs+0x2d4/0x9b0 kernel/softirq.c:561
__do_softirq kernel/softirq.c:595 [inline]
invoke_softirq kernel/softirq.c:435 [inline]
__irq_exit_rcu+0xf7/0x220 kernel/softirq.c:662
irq_exit_rcu+0x9/0x30 kernel/softirq.c:678
instr_sysvec_apic_timer_interrupt arch/x86/kernel/apic/apic.c:1049 [inline]
sysvec_apic_timer_interrupt+0xa6/0xc0 arch/x86/kernel/apic/apic.c:1049
</IRQ> |
| In the Linux kernel, the following vulnerability has been resolved:
net: davicom: fix UAF in dm9000_drv_remove
dm is netdev private data and it cannot be
used after free_netdev() call. Using dm after free_netdev()
can cause UAF bug. Fix it by moving free_netdev() at the end of the
function.
This is similar to the issue fixed in commit
ad297cd2db89 ("net: qcom/emac: fix UAF in emac_remove").
This bug is detected by our static analysis tool. |
| In the Linux kernel, the following vulnerability has been resolved:
netem: Update sch->q.qlen before qdisc_tree_reduce_backlog()
qdisc_tree_reduce_backlog() notifies parent qdisc only if child
qdisc becomes empty, therefore we need to reduce the backlog of the
child qdisc before calling it. Otherwise it would miss the opportunity
to call cops->qlen_notify(), in the case of DRR, it resulted in UAF
since DRR uses ->qlen_notify() to maintain its active list. |
| In the Linux kernel, the following vulnerability has been resolved:
net: sched: Disallow replacing of child qdisc from one parent to another
Lion Ackermann was able to create a UAF which can be abused for privilege
escalation with the following script
Step 1. create root qdisc
tc qdisc add dev lo root handle 1:0 drr
step2. a class for packet aggregation do demonstrate uaf
tc class add dev lo classid 1:1 drr
step3. a class for nesting
tc class add dev lo classid 1:2 drr
step4. a class to graft qdisc to
tc class add dev lo classid 1:3 drr
step5.
tc qdisc add dev lo parent 1:1 handle 2:0 plug limit 1024
step6.
tc qdisc add dev lo parent 1:2 handle 3:0 drr
step7.
tc class add dev lo classid 3:1 drr
step 8.
tc qdisc add dev lo parent 3:1 handle 4:0 pfifo
step 9. Display the class/qdisc layout
tc class ls dev lo
class drr 1:1 root leaf 2: quantum 64Kb
class drr 1:2 root leaf 3: quantum 64Kb
class drr 3:1 root leaf 4: quantum 64Kb
tc qdisc ls
qdisc drr 1: dev lo root refcnt 2
qdisc plug 2: dev lo parent 1:1
qdisc pfifo 4: dev lo parent 3:1 limit 1000p
qdisc drr 3: dev lo parent 1:2
step10. trigger the bug <=== prevented by this patch
tc qdisc replace dev lo parent 1:3 handle 4:0
step 11. Redisplay again the qdiscs/classes
tc class ls dev lo
class drr 1:1 root leaf 2: quantum 64Kb
class drr 1:2 root leaf 3: quantum 64Kb
class drr 1:3 root leaf 4: quantum 64Kb
class drr 3:1 root leaf 4: quantum 64Kb
tc qdisc ls
qdisc drr 1: dev lo root refcnt 2
qdisc plug 2: dev lo parent 1:1
qdisc pfifo 4: dev lo parent 3:1 refcnt 2 limit 1000p
qdisc drr 3: dev lo parent 1:2
Observe that a) parent for 4:0 does not change despite the replace request.
There can only be one parent. b) refcount has gone up by two for 4:0 and
c) both class 1:3 and 3:1 are pointing to it.
Step 12. send one packet to plug
echo "" | socat -u STDIN UDP4-DATAGRAM:127.0.0.1:8888,priority=$((0x10001))
step13. send one packet to the grafted fifo
echo "" | socat -u STDIN UDP4-DATAGRAM:127.0.0.1:8888,priority=$((0x10003))
step14. lets trigger the uaf
tc class delete dev lo classid 1:3
tc class delete dev lo classid 1:1
The semantics of "replace" is for a del/add _on the same node_ and not
a delete from one node(3:1) and add to another node (1:3) as in step10.
While we could "fix" with a more complex approach there could be
consequences to expectations so the patch takes the preventive approach of
"disallow such config".
Joint work with Lion Ackermann <nnamrec@gmail.com> |
| Insufficient resource pool in the core management mechanism for some Intel(R) Processors may allow an authenticated user to potentially enable denial of service via local access. |
| corydolphin/flask-cors version 4.0.1 contains an improper regex path matching vulnerability. The plugin prioritizes longer regex patterns over more specific ones when matching paths, which can lead to less restrictive CORS policies being applied to sensitive endpoints. This mismatch in regex pattern priority allows unauthorized cross-origin access to sensitive data or functionality, potentially exposing confidential information and increasing the risk of unauthorized actions by malicious actors. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: Explicitly verify target vCPU is online in kvm_get_vcpu()
Explicitly verify the target vCPU is fully online _prior_ to clamping the
index in kvm_get_vcpu(). If the index is "bad", the nospec clamping will
generate '0', i.e. KVM will return vCPU0 instead of NULL.
In practice, the bug is unlikely to cause problems, as it will only come
into play if userspace or the guest is buggy or misbehaving, e.g. KVM may
send interrupts to vCPU0 instead of dropping them on the floor.
However, returning vCPU0 when it shouldn't exist per online_vcpus is
problematic now that KVM uses an xarray for the vCPUs array, as KVM needs
to insert into the xarray before publishing the vCPU to userspace (see
commit c5b077549136 ("KVM: Convert the kvm->vcpus array to a xarray")),
i.e. before vCPU creation is guaranteed to succeed.
As a result, incorrectly providing access to vCPU0 will trigger a
use-after-free if vCPU0 is dereferenced and kvm_vm_ioctl_create_vcpu()
bails out of vCPU creation due to an error and frees vCPU0. Commit
afb2acb2e3a3 ("KVM: Fix vcpu_array[0] races") papered over that issue, but
in doing so introduced an unsolvable teardown conundrum. Preventing
accesses to vCPU0 before it's fully online will allow reverting commit
afb2acb2e3a3, without re-introducing the vcpu_array[0] UAF race. |
| In the Linux kernel, the following vulnerability has been resolved:
wifi: rtlwifi: remove unused check_buddy_priv
Commit 2461c7d60f9f ("rtlwifi: Update header file") introduced a global
list of private data structures.
Later on, commit 26634c4b1868 ("rtlwifi Modify existing bits to match
vendor version 2013.02.07") started adding the private data to that list at
probe time and added a hook, check_buddy_priv to find the private data from
a similar device.
However, that function was never used.
Besides, though there is a lock for that list, it is never used. And when
the probe fails, the private data is never removed from the list. This
would cause a second probe to access freed memory.
Remove the unused hook, structures and members, which will prevent the
potential race condition on the list and its corruption during a second
probe when probe fails. |
| In the Linux kernel, the following vulnerability has been resolved:
team: prevent adding a device which is already a team device lower
Prevent adding a device which is already a team device lower,
e.g. adding veth0 if vlan1 was already added and veth0 is a lower of
vlan1.
This is not useful in practice and can lead to recursive locking:
$ ip link add veth0 type veth peer name veth1
$ ip link set veth0 up
$ ip link set veth1 up
$ ip link add link veth0 name veth0.1 type vlan protocol 802.1Q id 1
$ ip link add team0 type team
$ ip link set veth0.1 down
$ ip link set veth0.1 master team0
team0: Port device veth0.1 added
$ ip link set veth0 down
$ ip link set veth0 master team0
============================================
WARNING: possible recursive locking detected
6.13.0-rc2-virtme-00441-ga14a429069bb #46 Not tainted
--------------------------------------------
ip/7684 is trying to acquire lock:
ffff888016848e00 (team->team_lock_key){+.+.}-{4:4}, at: team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
but task is already holding lock:
ffff888016848e00 (team->team_lock_key){+.+.}-{4:4}, at: team_add_slave (drivers/net/team/team_core.c:1147 drivers/net/team/team_core.c:1977)
other info that might help us debug this:
Possible unsafe locking scenario:
CPU0
----
lock(team->team_lock_key);
lock(team->team_lock_key);
*** DEADLOCK ***
May be due to missing lock nesting notation
2 locks held by ip/7684:
stack backtrace:
CPU: 3 UID: 0 PID: 7684 Comm: ip Not tainted 6.13.0-rc2-virtme-00441-ga14a429069bb #46
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl (lib/dump_stack.c:122)
print_deadlock_bug.cold (kernel/locking/lockdep.c:3040)
__lock_acquire (kernel/locking/lockdep.c:3893 kernel/locking/lockdep.c:5226)
? netlink_broadcast_filtered (net/netlink/af_netlink.c:1548)
lock_acquire.part.0 (kernel/locking/lockdep.c:467 kernel/locking/lockdep.c:5851)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? trace_lock_acquire (./include/trace/events/lock.h:24 (discriminator 2))
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? lock_acquire (kernel/locking/lockdep.c:5822)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
__mutex_lock (kernel/locking/mutex.c:587 kernel/locking/mutex.c:735)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
? fib_sync_up (net/ipv4/fib_semantics.c:2167)
? team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
team_device_event (drivers/net/team/team_core.c:2928 drivers/net/team/team_core.c:2951 drivers/net/team/team_core.c:2973)
notifier_call_chain (kernel/notifier.c:85)
call_netdevice_notifiers_info (net/core/dev.c:1996)
__dev_notify_flags (net/core/dev.c:8993)
? __dev_change_flags (net/core/dev.c:8975)
dev_change_flags (net/core/dev.c:9027)
vlan_device_event (net/8021q/vlan.c:85 net/8021q/vlan.c:470)
? br_device_event (net/bridge/br.c:143)
notifier_call_chain (kernel/notifier.c:85)
call_netdevice_notifiers_info (net/core/dev.c:1996)
dev_open (net/core/dev.c:1519 net/core/dev.c:1505)
team_add_slave (drivers/net/team/team_core.c:1219 drivers/net/team/team_core.c:1977)
? __pfx_team_add_slave (drivers/net/team/team_core.c:1972)
do_set_master (net/core/rtnetlink.c:2917)
do_setlink.isra.0 (net/core/rtnetlink.c:3117) |
| In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: f_tcm: Don't free command immediately
Don't prematurely free the command. Wait for the status completion of
the sense status. It can be freed then. Otherwise we will double-free
the command. |