CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A vulnerability in Cisco RCM for Cisco StarOS Software could allow an unauthenticated, remote attacker to perform remote code execution on the application with root-level privileges in the context of the configured container.
This vulnerability exists because the debug mode is incorrectly enabled for specific services. An attacker could exploit this vulnerability by connecting to the device and navigating to the service with debug mode enabled. A successful exploit could allow the attacker to execute arbitrary commands as the root user.
The attacker would need to perform detailed reconnaissance to allow for unauthenticated access. The vulnerability can also be exploited by an authenticated attacker.
Cisco has released software updates that address this vulnerability. There are no workarounds that address this vulnerability. |
Multiple Cisco products are affected by a vulnerability in the Snort detection engine that could allow an unauthenticated, remote attacker to bypass a configured file policy for HTTP.
The vulnerability is due to incorrect handling of specific HTTP header parameters. An attacker could exploit this vulnerability by sending crafted HTTP packets through an affected device. A successful exploit could allow the attacker to bypass a configured file policy for HTTP packets and deliver a malicious payload. |
A vulnerability in the implementation of the CLI on a device that is running ConfD could allow an authenticated, local attacker to perform a command injection attack.
The vulnerability is due to insufficient validation of a process argument on an affected device. An attacker could exploit this vulnerability by injecting commands during the execution of this process. A successful exploit could allow the attacker to execute arbitrary commands on the underlying operating system with the privilege level of ConfD, which is commonly root. |
A vulnerability in Cisco Unified Threat Defense (UTD) Snort Intrusion Prevention System (IPS) Engine for Cisco IOS XE Software could allow an unauthenticated, remote attacker to bypass configured security policies or cause a denial of service (DoS) condition on an affected device.
This vulnerability is due to insufficient validation of HTTP requests when they are processed by Cisco UTD Snort IPS Engine. An attacker could exploit this vulnerability by sending a crafted HTTP request through an affected device. A successful exploit could allow the attacker to trigger a reload of the Snort process. If the action in case of Cisco UTD Snort IPS Engine failure is set to the default, fail-open, successful exploitation of this vulnerability could allow the attacker to bypass configured security policies. If the action in case of Cisco UTD Snort IPS Engine failure is set to fail-close, successful exploitation of this vulnerability could cause traffic that is configured to be inspected by Cisco UTD Snort IPS Engine to be dropped. |
A vulnerability in the web-based management interface of Cisco Unified Industrial Wireless Software for Cisco Ultra-Reliable Wireless Backhaul (URWB) Access Points could allow an unauthenticated, remote attacker to perform command injection attacks with root privileges on the underlying operating system.
This vulnerability is due to improper validation of input to the web-based management interface. An attacker could exploit this vulnerability by sending crafted HTTP requests to the web-based management interface of an affected system. A successful exploit could allow the attacker to execute arbitrary commands with root privileges on the underlying operating system of the affected device. |
A vulnerability in the web UI of Cisco Desk Phone 9800 Series, Cisco IP Phone 7800 and 8800 Series, and Cisco Video Phone 8875 could allow an unauthenticated, remote attacker to access sensitive information on an affected device.
This vulnerability is due to improper storage of sensitive information within the web UI of Session Initiation Protocol (SIP)-based phone loads. An attacker could exploit this vulnerability by browsing to the IP address of a device that has Web Access enabled. A successful exploit could allow the attacker to access sensitive information, including incoming and outgoing call records.
Note: Web Access is disabled by default. |
A vulnerability in the access control list (ACL) programming of Cisco Nexus 3550-F Switches could allow an unauthenticated, remote attacker to send traffic that should be blocked to the management interface of an affected device.
This vulnerability exists because ACL deny rules are not properly enforced at the time of device reboot. An attacker could exploit this vulnerability by attempting to send traffic to the management interface of an affected device. A successful exploit could allow the attacker to send traffic to the management interface of the affected device. |
A vulnerability in the Internet Key Exchange version 2 (IKEv2) protocol for VPN termination of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) condition on an affected device.
This vulnerability is due to insufficient input validation. An attacker could exploit this vulnerability by sending crafted IKEv2 traffic to an affected device. A successful exploit could allow the attacker to cause the device to reload, resulting in a DoS condition. |
A vulnerability in Cisco Firepower Threat Defense (FTD) Software for Cisco Firepower 1000, 2100, 3100, and 4200 Series could allow an unauthenticated, local attacker to access an affected system using static credentials.
This vulnerability is due to the presence of static accounts with hard-coded passwords on an affected system. An attacker could exploit this vulnerability by logging in to the CLI of an affected device with these credentials. A successful exploit could allow the attacker to access the affected system and retrieve sensitive information, perform limited troubleshooting actions, modify some configuration options, or render the device unable to boot to the operating system, requiring a reimage of the device. |
A vulnerability in the geolocation access control feature of Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to bypass an access control policy.
This vulnerability is due to improper assignment of geolocation data. An attacker could exploit this vulnerability by sending traffic through an affected device. A successful exploit could allow the attacker to bypass a geolocation-based access control policy and successfully send traffic to a protected device. |
A vulnerability in the web-based management interface of Cisco Firepower Management Center (FMC) Software could allow an authenticated, remote attacker to conduct a cross-site scripting (XSS) attack against a user of the interface of an affected device. This vulnerability is due to insufficient validation of user-supplied input by the web-based management interface. An attacker could exploit this vulnerability by inserting crafted input into various data fields in an affected interface. A successful exploit could allow the attacker to execute arbitrary script code in the context of the interface, or access sensitive, browser-based information. |
A vulnerability in the VPN web server of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an authenticated, local attacker to execute arbitrary code with root-level privileges. Administrator-level privileges are required to exploit this vulnerability.
This vulnerability is due to improper validation of a specific file when it is read from system flash memory. An attacker could exploit this vulnerability by restoring a crafted backup file to an affected device. A successful exploit could allow the attacker to execute arbitrary code on the affected device after the next reload of the device, which could alter system behavior. Because the injected code could persist across device reboots, Cisco has raised the Security Impact Rating (SIR) of this advisory from Medium to High. |
A vulnerability in the web-based management interface of Cisco Secure Firewall Management Center (FMC) Software, formerly Firepower Management Center Software, could allow an authenticated, remote attacker to elevate privileges on an affected device. To exploit this vulnerability, an attacker must have a valid account on the device that is configured with a custom read-only role.
This vulnerability is due to insufficient validation of role permissions in part of the web-based management interface. An attacker could exploit this vulnerability by performing a write operation on the affected part of the web-based management interface. A successful exploit could allow the attacker to modify certain parts of the configuration. |
A vulnerability in the web-based management interface of Cisco Secure Firewall Management Center (FMC) Software could allow an authenticated, remote attacker to conduct SQL injection attacks on an affected system.
This vulnerability exists because the web-based management interface does not validate user input adequately. An attacker could exploit this vulnerability by authenticating to the application as an Administrator and sending crafted SQL queries to an affected system. A successful exploit could allow the attacker to obtain unauthorized data from the database and make changes to the system. To exploit this vulnerability, an attacker would need Administrator-level privileges. |
A vulnerability in the web-based management interface of Cisco Secure Firewall Management Center (FMC) Software could allow an authenticated, remote attacker to conduct SQL injection attacks on an affected system.
This vulnerability exists because the web-based management interface does not validate user input adequately. An attacker could exploit this vulnerability by authenticating to the application as an Administrator and sending crafted SQL queries to an affected system. A successful exploit could allow the attacker to obtain unauthorized data from the database and make changes to the system. To exploit this vulnerability, an attacker would need Administrator-level privileges. |
A vulnerability in Internet Key Exchange version 2 (IKEv2) processing of Cisco Secure Client Software could allow an unauthenticated, remote attacker to cause a denial of service (DoS) of Cisco Secure Client.
This vulnerability is due to an integer underflow condition. An attacker could exploit this vulnerability by sending a crafted IKEv2 packet to an affected system. A successful exploit could allow the attacker to cause Cisco Secure Client Software to crash, resulting in a DoS condition on the client software.
Note: Cisco Secure Client Software releases 4.10 and earlier were known as Cisco AnyConnect Secure Mobility Client. |
A vulnerability in the web-based management interface of Cisco Secure Firewall Management Center (FMC) Software could allow an authenticated, remote attacker to conduct SQL injection attacks on an affected system.
This vulnerability exists because the web-based management interface does not validate user input adequately. An attacker could exploit this vulnerability by authenticating to the application as an Administrator and sending crafted SQL queries to an affected system. A successful exploit could allow the attacker to obtain unauthorized data from the database and make changes to the system. To exploit this vulnerability, an attacker would need Administrator-level privileges. |
A vulnerability in the web-based management interface of Cisco Secure Firewall Management Center (FMC) Software, formerly Firepower Management Center Software, could allow an authenticated, remote attacker to execute arbitrary commands on the underlying operating system as root.
This vulnerability is due to insufficient input validation of certain HTTP requests. An attacker could exploit this vulnerability by authenticating to the web-based management interface of an affected device and then sending a crafted HTTP request to the device. A successful exploit could allow the attacker to execute arbitrary commands with root permissions on the underlying operating system of the Cisco FMC device or to execute commands on managed Cisco Firepower Threat Defense (FTD) devices. To exploit this vulnerability, the attacker would need valid credentials for a user account with at least the role of Security Analyst (Read Only). |
A vulnerability in the web-based management interface of Cisco Secure Firewall Management Center (FMC) Software, formerly Firepower Management Center Software, could allow an authenticated, remote attacker to perform an SQL injection attack against an affected device. To exploit this vulnerability, an attacker must have a valid account on the device with the role of Security Approver, Intrusion Admin, Access Admin, or Network Admin.
This vulnerability is due to insufficient validation of user-supplied input. An attacker could exploit this vulnerability by sending a crafted HTTP request to the web-based management interface of an affected device. A successful exploit could allow the attacker to read the contents of databases on the affected device and also obtain limited read access to the underlying operating system. |
A vulnerability in the session authentication functionality of the Remote Access SSL VPN feature of Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to prevent users from authenticating.
This vulnerability is due to insufficient entropy in the authentication process. An attacker could exploit this vulnerability by determining the handle of an authenticating user and using it to terminate their authentication session. A successful exploit could allow the attacker to force a user to restart the authentication process, preventing a legitimate user from establishing remote access VPN sessions. |