| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
fbdev: Fix invalid page access after closing deferred I/O devices
When a fbdev with deferred I/O is once opened and closed, the dirty
pages still remain queued in the pageref list, and eventually later
those may be processed in the delayed work. This may lead to a
corruption of pages, hitting an Oops.
This patch makes sure to cancel the delayed work and clean up the
pageref list at closing the device for addressing the bug. A part of
the cleanup code is factored out as a new helper function that is
called from the common fb_release(). |
| In the Linux kernel, the following vulnerability has been resolved:
net: usb: aqc111: Fix out-of-bounds accesses in RX fixup
aqc111_rx_fixup() contains several out-of-bounds accesses that can be
triggered by a malicious (or defective) USB device, in particular:
- The metadata array (desc_offset..desc_offset+2*pkt_count) can be out of bounds,
causing OOB reads and (on big-endian systems) OOB endianness flips.
- A packet can overlap the metadata array, causing a later OOB
endianness flip to corrupt data used by a cloned SKB that has already
been handed off into the network stack.
- A packet SKB can be constructed whose tail is far beyond its end,
causing out-of-bounds heap data to be considered part of the SKB's
data.
Found doing variant analysis. Tested it with another driver (ax88179_178a), since
I don't have a aqc111 device to test it, but the code looks very similar. |
| A buffer over-read vulnerability in Ivanti Connect Secure before 22.7R2.8 or 22.8R2, Ivanti Policy Secure before 22.7R1.5, Ivanti ZTA Gateway before 2.8R2.3-723 and Ivanti Neurons for Secure Access before 22.8R1.4 (Fix deployed on 02-Aug-2025) allows a remote unauthenticated attacker to trigger a denial of service. CWE-125 |
| Out-of-bounds Read, Out-of-bounds Write vulnerability in RTI Connext Professional (Recording Service) allows Overflow Buffers, Overread Buffers.This issue affects Connext Professional: from 7.4.0 before 7.5.0, from 7.0.0 before 7.3.0.7, from 6.1.0 before 6.1.2.23, from 6.0.0 before 6.0.1.42. |
| In the Linux kernel, the following vulnerability has been resolved:
net/tls: fix slab-out-of-bounds bug in decrypt_internal
The memory size of tls_ctx->rx.iv for AES128-CCM is 12 setting in
tls_set_sw_offload(). The return value of crypto_aead_ivsize()
for "ccm(aes)" is 16. So memcpy() require 16 bytes from 12 bytes
memory space will trigger slab-out-of-bounds bug as following:
==================================================================
BUG: KASAN: slab-out-of-bounds in decrypt_internal+0x385/0xc40 [tls]
Read of size 16 at addr ffff888114e84e60 by task tls/10911
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x44
print_report.cold+0x5e/0x5db
? decrypt_internal+0x385/0xc40 [tls]
kasan_report+0xab/0x120
? decrypt_internal+0x385/0xc40 [tls]
kasan_check_range+0xf9/0x1e0
memcpy+0x20/0x60
decrypt_internal+0x385/0xc40 [tls]
? tls_get_rec+0x2e0/0x2e0 [tls]
? process_rx_list+0x1a5/0x420 [tls]
? tls_setup_from_iter.constprop.0+0x2e0/0x2e0 [tls]
decrypt_skb_update+0x9d/0x400 [tls]
tls_sw_recvmsg+0x3c8/0xb50 [tls]
Allocated by task 10911:
kasan_save_stack+0x1e/0x40
__kasan_kmalloc+0x81/0xa0
tls_set_sw_offload+0x2eb/0xa20 [tls]
tls_setsockopt+0x68c/0x700 [tls]
__sys_setsockopt+0xfe/0x1b0
Replace the crypto_aead_ivsize() with prot->iv_size + prot->salt_size
when memcpy() iv value in TLS_1_3_VERSION scenario. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to shrink read extent node in batches
We use rwlock to protect core structure data of extent tree during
its shrink, however, if there is a huge number of extent nodes in
extent tree, during shrink of extent tree, it may hold rwlock for
a very long time, which may trigger kernel hang issue.
This patch fixes to shrink read extent node in batches, so that,
critical region of the rwlock can be shrunk to avoid its extreme
long time hold. |
| A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files.
This could allow an attacker to execute code in the context of the current process. |
| A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files.
This could allow an attacker to execute code in the context of the current process. |
| A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.14), Teamcenter Visualization V2312 (All versions < V2312.0010), Teamcenter Visualization V2406 (All versions < V2406.0008), Teamcenter Visualization V2412 (All versions < V2412.0004), Tecnomatix Plant Simulation V2404 (All versions < V2404.0013). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files.
This could allow an attacker to execute code in the context of the current process. |
| A vulnerability has been identified in Teamcenter Visualization V14.3 (All versions < V14.3.0.13), Teamcenter Visualization V2312 (All versions < V2312.0009), Teamcenter Visualization V2406 (All versions < V2406.0007), Teamcenter Visualization V2412 (All versions < V2412.0002), Tecnomatix Plant Simulation V2302 (All versions < V2302.0021), Tecnomatix Plant Simulation V2404 (All versions < V2404.0010). The affected applications contain an out of bounds read past the end of an allocated structure while parsing specially crafted WRL files.
This could allow an attacker to execute code in the context of the current process. |
| In the Linux kernel, the following vulnerability has been resolved:
ath5k: fix OOB in ath5k_eeprom_read_pcal_info_5111
The bug was found during fuzzing. Stacktrace locates it in
ath5k_eeprom_convert_pcal_info_5111.
When none of the curve is selected in the loop, idx can go
up to AR5K_EEPROM_N_PD_CURVES. The line makes pd out of bound.
pd = &chinfo[pier].pd_curves[idx];
There are many OOB writes using pd later in the code. So I
added a sanity check for idx. Checks for other loops involving
AR5K_EEPROM_N_PD_CURVES are not needed as the loop index is not
used outside the loops.
The patch is NOT tested with real device.
The following is the fuzzing report
BUG: KASAN: slab-out-of-bounds in ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k]
Write of size 1 at addr ffff8880174a4d60 by task modprobe/214
CPU: 0 PID: 214 Comm: modprobe Not tainted 5.6.0 #1
Call Trace:
dump_stack+0x76/0xa0
print_address_description.constprop.0+0x16/0x200
? ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k]
? ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k]
__kasan_report.cold+0x37/0x7c
? ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k]
kasan_report+0xe/0x20
ath5k_eeprom_read_pcal_info_5111+0x126a/0x1390 [ath5k]
? apic_timer_interrupt+0xa/0x20
? ath5k_eeprom_init_11a_pcal_freq+0xbc0/0xbc0 [ath5k]
? ath5k_pci_eeprom_read+0x228/0x3c0 [ath5k]
ath5k_eeprom_init+0x2513/0x6290 [ath5k]
? ath5k_eeprom_init_11a_pcal_freq+0xbc0/0xbc0 [ath5k]
? usleep_range+0xb8/0x100
? apic_timer_interrupt+0xa/0x20
? ath5k_eeprom_read_pcal_info_2413+0x2f20/0x2f20 [ath5k]
ath5k_hw_init+0xb60/0x1970 [ath5k]
ath5k_init_ah+0x6fe/0x2530 [ath5k]
? kasprintf+0xa6/0xe0
? ath5k_stop+0x140/0x140 [ath5k]
? _dev_notice+0xf6/0xf6
? apic_timer_interrupt+0xa/0x20
ath5k_pci_probe.cold+0x29a/0x3d6 [ath5k]
? ath5k_pci_eeprom_read+0x3c0/0x3c0 [ath5k]
? mutex_lock+0x89/0xd0
? ath5k_pci_eeprom_read+0x3c0/0x3c0 [ath5k]
local_pci_probe+0xd3/0x160
pci_device_probe+0x23f/0x3e0
? pci_device_remove+0x280/0x280
? pci_device_remove+0x280/0x280
really_probe+0x209/0x5d0 |
| In the Linux kernel, the following vulnerability has been resolved:
ring-buffer: Fix overflow in __rb_map_vma
An overflow occurred when performing the following calculation:
nr_pages = ((nr_subbufs + 1) << subbuf_order) - pgoff;
Add a check before the calculation to avoid this problem.
syzbot reported this as a slab-out-of-bounds in __rb_map_vma:
BUG: KASAN: slab-out-of-bounds in __rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058
Read of size 8 at addr ffff8880767dd2b8 by task syz-executor187/5836
CPU: 0 UID: 0 PID: 5836 Comm: syz-executor187 Not tainted 6.13.0-rc2-syzkaller-00159-gf932fb9b4074 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 11/25/2024
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0xc3/0x620 mm/kasan/report.c:489
kasan_report+0xd9/0x110 mm/kasan/report.c:602
__rb_map_vma+0x9ab/0xae0 kernel/trace/ring_buffer.c:7058
ring_buffer_map+0x56e/0x9b0 kernel/trace/ring_buffer.c:7138
tracing_buffers_mmap+0xa6/0x120 kernel/trace/trace.c:8482
call_mmap include/linux/fs.h:2183 [inline]
mmap_file mm/internal.h:124 [inline]
__mmap_new_file_vma mm/vma.c:2291 [inline]
__mmap_new_vma mm/vma.c:2355 [inline]
__mmap_region+0x1786/0x2670 mm/vma.c:2456
mmap_region+0x127/0x320 mm/mmap.c:1348
do_mmap+0xc00/0xfc0 mm/mmap.c:496
vm_mmap_pgoff+0x1ba/0x360 mm/util.c:580
ksys_mmap_pgoff+0x32c/0x5c0 mm/mmap.c:542
__do_sys_mmap arch/x86/kernel/sys_x86_64.c:89 [inline]
__se_sys_mmap arch/x86/kernel/sys_x86_64.c:82 [inline]
__x64_sys_mmap+0x125/0x190 arch/x86/kernel/sys_x86_64.c:82
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xcd/0x250 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
The reproducer for this bug is:
------------------------8<-------------------------
#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <asm/types.h>
#include <sys/mman.h>
int main(int argc, char **argv)
{
int page_size = getpagesize();
int fd;
void *meta;
system("echo 1 > /sys/kernel/tracing/buffer_size_kb");
fd = open("/sys/kernel/tracing/per_cpu/cpu0/trace_pipe_raw", O_RDONLY);
meta = mmap(NULL, page_size, PROT_READ, MAP_SHARED, fd, page_size * 5);
}
------------------------>8------------------------- |
| In the Linux kernel, the following vulnerability has been resolved:
media: imx-jpeg: fix a bug of accessing array out of bounds
When error occurs in parsing jpeg, the slot isn't acquired yet, it may
be the default value MXC_MAX_SLOTS.
If the driver access the slot using the incorrect slot number, it will
access array out of bounds.
The result is the driver will change num_domains, which follows
slot_data in struct mxc_jpeg_dev.
Then the driver won't detach the pm domain at rmmod, which will lead to
kernel panic when trying to insmod again. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: SVM: fix panic on out-of-bounds guest IRQ
As guest_irq is coming from KVM_IRQFD API call, it may trigger
crash in svm_update_pi_irte() due to out-of-bounds:
crash> bt
PID: 22218 TASK: ffff951a6ad74980 CPU: 73 COMMAND: "vcpu8"
#0 [ffffb1ba6707fa40] machine_kexec at ffffffff8565b397
#1 [ffffb1ba6707fa90] __crash_kexec at ffffffff85788a6d
#2 [ffffb1ba6707fb58] crash_kexec at ffffffff8578995d
#3 [ffffb1ba6707fb70] oops_end at ffffffff85623c0d
#4 [ffffb1ba6707fb90] no_context at ffffffff856692c9
#5 [ffffb1ba6707fbf8] exc_page_fault at ffffffff85f95b51
#6 [ffffb1ba6707fc50] asm_exc_page_fault at ffffffff86000ace
[exception RIP: svm_update_pi_irte+227]
RIP: ffffffffc0761b53 RSP: ffffb1ba6707fd08 RFLAGS: 00010086
RAX: ffffb1ba6707fd78 RBX: ffffb1ba66d91000 RCX: 0000000000000001
RDX: 00003c803f63f1c0 RSI: 000000000000019a RDI: ffffb1ba66db2ab8
RBP: 000000000000019a R8: 0000000000000040 R9: ffff94ca41b82200
R10: ffffffffffffffcf R11: 0000000000000001 R12: 0000000000000001
R13: 0000000000000001 R14: ffffffffffffffcf R15: 000000000000005f
ORIG_RAX: ffffffffffffffff CS: 0010 SS: 0018
#7 [ffffb1ba6707fdb8] kvm_irq_routing_update at ffffffffc09f19a1 [kvm]
#8 [ffffb1ba6707fde0] kvm_set_irq_routing at ffffffffc09f2133 [kvm]
#9 [ffffb1ba6707fe18] kvm_vm_ioctl at ffffffffc09ef544 [kvm]
RIP: 00007f143c36488b RSP: 00007f143a4e04b8 RFLAGS: 00000246
RAX: ffffffffffffffda RBX: 00007f05780041d0 RCX: 00007f143c36488b
RDX: 00007f05780041d0 RSI: 000000004008ae6a RDI: 0000000000000020
RBP: 00000000000004e8 R8: 0000000000000008 R9: 00007f05780041e0
R10: 00007f0578004560 R11: 0000000000000246 R12: 00000000000004e0
R13: 000000000000001a R14: 00007f1424001c60 R15: 00007f0578003bc0
ORIG_RAX: 0000000000000010 CS: 0033 SS: 002b
Vmx have been fix this in commit 3a8b0677fc61 (KVM: VMX: Do not BUG() on
out-of-bounds guest IRQ), so we can just copy source from that to fix
this. |
| In the Linux kernel, the following vulnerability has been resolved:
ACPI: CPPC: Avoid out of bounds access when parsing _CPC data
If the NumEntries field in the _CPC return package is less than 2, do
not attempt to access the "Revision" element of that package, because
it may not be present then.
BugLink: https://lore.kernel.org/lkml/20220322143534.GC32582@xsang-OptiPlex-9020/ |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: Avoid cross-chip syncing of VLAN filtering
Changes to VLAN filtering are not applicable to cross-chip
notifications.
On a system like this:
.-----. .-----. .-----.
| sw1 +---+ sw2 +---+ sw3 |
'-1-2-' '-1-2-' '-1-2-'
Before this change, upon sw1p1 leaving a bridge, a call to
dsa_port_vlan_filtering would also be made to sw2p1 and sw3p1.
In this scenario:
.---------. .-----. .-----.
| sw1 +---+ sw2 +---+ sw3 |
'-1-2-3-4-' '-1-2-' '-1-2-'
When sw1p4 would leave a bridge, dsa_port_vlan_filtering would be
called for sw2 and sw3 with a non-existing port - leading to array
out-of-bounds accesses and crashes on mv88e6xxx. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/i915/gem: add missing boundary check in vm_access
A missing bounds check in vm_access() can lead to an out-of-bounds read
or write in the adjacent memory area, since the len attribute is not
validated before the memcpy later in the function, potentially hitting:
[ 183.637831] BUG: unable to handle page fault for address: ffffc90000c86000
[ 183.637934] #PF: supervisor read access in kernel mode
[ 183.637997] #PF: error_code(0x0000) - not-present page
[ 183.638059] PGD 100000067 P4D 100000067 PUD 100258067 PMD 106341067 PTE 0
[ 183.638144] Oops: 0000 [#2] PREEMPT SMP NOPTI
[ 183.638201] CPU: 3 PID: 1790 Comm: poc Tainted: G D 5.17.0-rc6-ci-drm-11296+ #1
[ 183.638298] Hardware name: Intel Corporation CoffeeLake Client Platform/CoffeeLake H DDR4 RVP, BIOS CNLSFWR1.R00.X208.B00.1905301319 05/30/2019
[ 183.638430] RIP: 0010:memcpy_erms+0x6/0x10
[ 183.640213] RSP: 0018:ffffc90001763d48 EFLAGS: 00010246
[ 183.641117] RAX: ffff888109c14000 RBX: ffff888111bece40 RCX: 0000000000000ffc
[ 183.642029] RDX: 0000000000001000 RSI: ffffc90000c86000 RDI: ffff888109c14004
[ 183.642946] RBP: 0000000000000ffc R08: 800000000000016b R09: 0000000000000000
[ 183.643848] R10: ffffc90000c85000 R11: 0000000000000048 R12: 0000000000001000
[ 183.644742] R13: ffff888111bed190 R14: ffff888109c14000 R15: 0000000000001000
[ 183.645653] FS: 00007fe5ef807540(0000) GS:ffff88845b380000(0000) knlGS:0000000000000000
[ 183.646570] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 183.647481] CR2: ffffc90000c86000 CR3: 000000010ff02006 CR4: 00000000003706e0
[ 183.648384] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 183.649271] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 183.650142] Call Trace:
[ 183.650988] <TASK>
[ 183.651793] vm_access+0x1f0/0x2a0 [i915]
[ 183.652726] __access_remote_vm+0x224/0x380
[ 183.653561] mem_rw.isra.0+0xf9/0x190
[ 183.654402] vfs_read+0x9d/0x1b0
[ 183.655238] ksys_read+0x63/0xe0
[ 183.656065] do_syscall_64+0x38/0xc0
[ 183.656882] entry_SYSCALL_64_after_hwframe+0x44/0xae
[ 183.657663] RIP: 0033:0x7fe5ef725142
[ 183.659351] RSP: 002b:00007ffe1e81c7e8 EFLAGS: 00000246 ORIG_RAX: 0000000000000000
[ 183.660227] RAX: ffffffffffffffda RBX: 0000557055dfb780 RCX: 00007fe5ef725142
[ 183.661104] RDX: 0000000000001000 RSI: 00007ffe1e81d880 RDI: 0000000000000005
[ 183.661972] RBP: 00007ffe1e81e890 R08: 0000000000000030 R09: 0000000000000046
[ 183.662832] R10: 0000557055dfc2e0 R11: 0000000000000246 R12: 0000557055dfb1c0
[ 183.663691] R13: 00007ffe1e81e980 R14: 0000000000000000 R15: 0000000000000000
Changes since v1:
- Updated if condition with range_overflows_t [Chris Wilson]
[mauld: tidy up the commit message and add Cc: stable]
(cherry picked from commit 661412e301e2ca86799aa4f400d1cf0bd38c57c6) |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: rx-macro: fix accessing array out of bounds for enum type
Accessing enums using integer would result in array out of bounds access
on platforms like aarch64 where sizeof(long) is 8 compared to enum size
which is 4 bytes. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: va-macro: fix accessing array out of bounds for enum type
Accessing enums using integer would result in array out of bounds access
on platforms like aarch64 where sizeof(long) is 8 compared to enum size
which is 4 bytes. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: codecs: rx-macro: fix accessing compander for aux
AUX interpolator does not have compander, so check before accessing
compander data for this.
Without this checkan array of out bounds access will be made in
comp_enabled[] array. |