CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A vulnerability has been identified in SIMATIC RTLS Locating Manager (6GT2780-0DA00) (All versions < V3.0.1.1), SIMATIC RTLS Locating Manager (6GT2780-0DA10) (All versions < V3.0.1.1), SIMATIC RTLS Locating Manager (6GT2780-0DA20) (All versions < V3.0.1.1), SIMATIC RTLS Locating Manager (6GT2780-0DA30) (All versions < V3.0.1.1), SIMATIC RTLS Locating Manager (6GT2780-1EA10) (All versions < V3.0.1.1), SIMATIC RTLS Locating Manager (6GT2780-1EA20) (All versions < V3.0.1.1), SIMATIC RTLS Locating Manager (6GT2780-1EA30) (All versions < V3.0.1.1). The affected systems use symmetric cryptography with a hard-coded key to protect the communication between client and server. This could allow an unauthenticated remote attacker to compromise confidentiality and integrity of the communication and, subsequently, availability of the system.
A successful exploit requires the attacker to gain knowledge of the hard-coded key and to be able to intercept the communication between client and server on the network. |
HCL DRYiCE Optibot Reset Station is impacted by a missing Strict Transport Security Header. This could allow an attacker to intercept or manipulate data during redirection. |
Dell PowerProtect Data Domain, versions prior to 7.13.0.0, LTS 7.7.5.40, LTS 7.10.1.30 contain an weak cryptographic algorithm vulnerability. A remote unauthenticated attacker could potentially exploit this vulnerability, leading to man-in-the-middle attack that exposes sensitive session information. |
Vyper is a Pythonic Smart Contract Language for the EVM. There is an error in the stack management when compiling the `IR` for `sha3_64`. Concretely, the `height` variable is miscalculated. The vulnerability can't be triggered without writing the `IR` by hand (that is, it cannot be triggered from regular vyper code). `sha3_64` is used for retrieval in mappings. No flow that would cache the `key` was found so the issue shouldn't be possible to trigger when compiling the compiler-generated `IR`. This issue isn't triggered during normal compilation of vyper code so the impact is low. At the time of publication there is no patch available. |
HCL DRYiCE Optibot Reset Station is impacted by insecure encryption of One-Time Passwords (OTPs). This could allow an attacker with access to the database to recover some or all encrypted values. |
HCL DRYiCE Optibot Reset Station is impacted by insecure encryption of security questions. This could allow an attacker with access to the database to recover some or all encrypted values. |
An issue fixed in AIT-Deutschland Alpha Innotec Heatpumps V2.88.3 or later, V3.89.0 or later, V4.81.3 or later and Novelan Heatpumps V2.88.3 or later, V3.89.0 or later, V4.81.3 or later, allows remote attackers to execute arbitrary code via the password component in the shadow file. |
IBM Semeru Runtime 8.0.302.0 through 8.0.392.0, 11.0.12.0 through 11.0.21.0, 17.0.1.0 - 17.0.9.0, and 21.0.1.0 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 281222. |
IBM i Access Client Solutions (ACS) 1.1.2 through 1.1.4 and 1.1.4.3 through 1.1.9.4 is vulnerable to NT LAN Manager (NTLM) hash disclosure by an attacker modifying UNC capable paths within ACS configuration files to point to a hostile server. If NTLM is enabled, the Windows operating system will try to authenticate using the current user's session. The hostile server could capture the NTLM hash information to obtain the user's credentials. IBM X-Force ID: 279091. |
Ursa is a cryptographic library for use with blockchains. The revocation schema that is part of the Ursa CL-Signatures implementations has a flaw that could impact the privacy guarantees defined by the AnonCreds verifiable credential model, allowing a malicious holder of a revoked credential to generate a valid Non-Revocation Proof for that credential as part of an AnonCreds presentation. A verifier may verify a credential from a holder as being "not revoked" when in fact, the holder's credential has been revoked. Ursa has moved to end-of-life status and no fix is expected. |
Impact: The library offers a function to generate an ed25519 key pair via Ed25519KeyIdentity.generate with an optional param to provide a 32 byte seed value, which will then be used as the secret key. When no seed value is provided, it is expected that the library generates the secret key using secure randomness. However, a recent change broke this guarantee and uses an insecure seed for key pair generation. Since the private key of this identity (535yc-uxytb-gfk7h-tny7p-vjkoe-i4krp-3qmcl-uqfgr-cpgej-yqtjq-rqe) is compromised, one could lose funds associated with the principal on ledgers or lose access to a canister where this principal is the controller.
|
A vulnerability was found in Juanpao JPShop up to 1.5.02. It has been declared as problematic. Affected by this vulnerability is an unknown functionality of the file api/config/params.php of the component API. The manipulation of the argument JWT_KEY_ADMIN leads to use of hard-coded cryptographic key
. The complexity of an attack is rather high. The exploitation appears to be difficult. The exploit has been disclosed to the public and may be used. The identifier VDB-252997 was assigned to this vulnerability. |
This vulnerability exists in USB Pratirodh due to the usage of a weaker cryptographic algorithm (hash) SHA1 in user login component. A local attacker with administrative privileges could exploit this vulnerability to obtain the password of USB Pratirodh on the targeted system.
Successful exploitation of this vulnerability could allow the attacker to take control of the application and modify the access control of registered users or devices on the targeted system.
|
The AES key utilized in the pairing process between a lock using Sciener firmware and a wireless keypad is not unique, and can be reused to compromise other locks using the Sciener firmware. |
Use of encryption key derived from static information in Synaptics Fingerprint Driver allows
an attacker to set up a TLS session with the fingerprint sensor and send restricted commands to the fingerprint sensor. This may
allow an attacker, who has physical access to the sensor, to enroll a fingerprint into the
template database. |
A weak cryptographic algorithm vulnerability has been identified in ioLogik E1200 Series firmware versions v3.3 and prior. This vulnerability can help an attacker compromise the confidentiality of sensitive data. This vulnerability may lead an attacker to get unexpected authorization. |
Issue summary: Generating excessively long X9.42 DH keys or checking
excessively long X9.42 DH keys or parameters may be very slow.
Impact summary: Applications that use the functions DH_generate_key() to
generate an X9.42 DH key may experience long delays. Likewise, applications
that use DH_check_pub_key(), DH_check_pub_key_ex() or EVP_PKEY_public_check()
to check an X9.42 DH key or X9.42 DH parameters may experience long delays.
Where the key or parameters that are being checked have been obtained from
an untrusted source this may lead to a Denial of Service.
While DH_check() performs all the necessary checks (as of CVE-2023-3817),
DH_check_pub_key() doesn't make any of these checks, and is therefore
vulnerable for excessively large P and Q parameters.
Likewise, while DH_generate_key() performs a check for an excessively large
P, it doesn't check for an excessively large Q.
An application that calls DH_generate_key() or DH_check_pub_key() and
supplies a key or parameters obtained from an untrusted source could be
vulnerable to a Denial of Service attack.
DH_generate_key() and DH_check_pub_key() are also called by a number of
other OpenSSL functions. An application calling any of those other
functions may similarly be affected. The other functions affected by this
are DH_check_pub_key_ex(), EVP_PKEY_public_check(), and EVP_PKEY_generate().
Also vulnerable are the OpenSSL pkey command line application when using the
"-pubcheck" option, as well as the OpenSSL genpkey command line application.
The OpenSSL SSL/TLS implementation is not affected by this issue.
The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this issue. |
A vulnerability has been identified in NPort 6000 Series, making the authentication mechanism vulnerable. This vulnerability arises from the incorrect implementation of sensitive information protection, potentially allowing malicious users to gain unauthorized access to the web service.
|
Issue summary: A bug has been identified in the processing of key and
initialisation vector (IV) lengths. This can lead to potential truncation
or overruns during the initialisation of some symmetric ciphers.
Impact summary: A truncation in the IV can result in non-uniqueness,
which could result in loss of confidentiality for some cipher modes.
When calling EVP_EncryptInit_ex2(), EVP_DecryptInit_ex2() or
EVP_CipherInit_ex2() the provided OSSL_PARAM array is processed after
the key and IV have been established. Any alterations to the key length,
via the "keylen" parameter or the IV length, via the "ivlen" parameter,
within the OSSL_PARAM array will not take effect as intended, potentially
causing truncation or overreading of these values. The following ciphers
and cipher modes are impacted: RC2, RC4, RC5, CCM, GCM and OCB.
For the CCM, GCM and OCB cipher modes, truncation of the IV can result in
loss of confidentiality. For example, when following NIST's SP 800-38D
section 8.2.1 guidance for constructing a deterministic IV for AES in
GCM mode, truncation of the counter portion could lead to IV reuse.
Both truncations and overruns of the key and overruns of the IV will
produce incorrect results and could, in some cases, trigger a memory
exception. However, these issues are not currently assessed as security
critical.
Changing the key and/or IV lengths is not considered to be a common operation
and the vulnerable API was recently introduced. Furthermore it is likely that
application developers will have spotted this problem during testing since
decryption would fail unless both peers in the communication were similarly
vulnerable. For these reasons we expect the probability of an application being
vulnerable to this to be quite low. However if an application is vulnerable then
this issue is considered very serious. For these reasons we have assessed this
issue as Moderate severity overall.
The OpenSSL SSL/TLS implementation is not affected by this issue.
The OpenSSL 3.0 and 3.1 FIPS providers are not affected by this because
the issue lies outside of the FIPS provider boundary.
OpenSSL 3.1 and 3.0 are vulnerable to this issue. |
IBM PowerSC 1.3, 2.0, and 2.1 uses weaker than expected cryptographic algorithms that could allow an attacker to decrypt highly sensitive information. IBM X-Force ID: 275129. |