| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The html/template package does not apply the proper rules for handling occurrences of "<script", "<!--", and "</script" within JS literals in <script> contexts. This may cause the template parser to improperly consider script contexts to be terminated early, causing actions to be improperly escaped. This could be leveraged to perform an XSS attack. |
| The html/template package does not properly handle HTML-like "" comment tokens, nor hashbang "#!" comment tokens, in <script> contexts. This may cause the template parser to improperly interpret the contents of <script> contexts, causing actions to be improperly escaped. This may be leveraged to perform an XSS attack. |
| Flask is a lightweight WSGI web application framework. When all of the following conditions are met, a response containing data intended for one client may be cached and subsequently sent by the proxy to other clients. If the proxy also caches `Set-Cookie` headers, it may send one client's `session` cookie to other clients. The severity depends on the application's use of the session and the proxy's behavior regarding cookies. The risk depends on all these conditions being met.
1. The application must be hosted behind a caching proxy that does not strip cookies or ignore responses with cookies.
2. The application sets `session.permanent = True`
3. The application does not access or modify the session at any point during a request.
4. `SESSION_REFRESH_EACH_REQUEST` enabled (the default).
5. The application does not set a `Cache-Control` header to indicate that a page is private or should not be cached.
This happens because vulnerable versions of Flask only set the `Vary: Cookie` header when the session is accessed or modified, not when it is refreshed (re-sent to update the expiration) without being accessed or modified. This issue has been fixed in versions 2.3.2 and 2.2.5. |
| Extremely large RSA keys in certificate chains can cause a client/server to expend significant CPU time verifying signatures. With fix, the size of RSA keys transmitted during handshakes is restricted to <= 8192 bits. Based on a survey of publicly trusted RSA keys, there are currently only three certificates in circulation with keys larger than this, and all three appear to be test certificates that are not actively deployed. It is possible there are larger keys in use in private PKIs, but we target the web PKI, so causing breakage here in the interests of increasing the default safety of users of crypto/tls seems reasonable. |
| The HTTP/1 client does not fully validate the contents of the Host header. A maliciously crafted Host header can inject additional headers or entire requests. With fix, the HTTP/1 client now refuses to send requests containing an invalid Request.Host or Request.URL.Host value. |
| HashiCorp Vault's implementation of Shamir's secret sharing used precomputed table lookups, and was vulnerable to cache-timing attacks. An attacker with access to, and the ability to observe a large number of unseal operations on the host through a side channel may reduce the search space of a brute force effort to recover the Shamir shares. Fixed in Vault 1.13.1, 1.12.5, and 1.11.9. |
| Templates do not properly consider backticks (`) as Javascript string delimiters, and do not escape them as expected. Backticks are used, since ES6, for JS template literals. If a template contains a Go template action within a Javascript template literal, the contents of the action can be used to terminate the literal, injecting arbitrary Javascript code into the Go template. As ES6 template literals are rather complex, and themselves can do string interpolation, the decision was made to simply disallow Go template actions from being used inside of them (e.g. "var a = {{.}}"), since there is no obviously safe way to allow this behavior. This takes the same approach as github.com/google/safehtml. With fix, Template.Parse returns an Error when it encounters templates like this, with an ErrorCode of value 12. This ErrorCode is currently unexported, but will be exported in the release of Go 1.21. Users who rely on the previous behavior can re-enable it using the GODEBUG flag jstmpllitinterp=1, with the caveat that backticks will now be escaped. This should be used with caution. |
| Calling any of the Parse functions on Go source code which contains //line directives with very large line numbers can cause an infinite loop due to integer overflow. |
| Multipart form parsing can consume large amounts of CPU and memory when processing form inputs containing very large numbers of parts. This stems from several causes: 1. mime/multipart.Reader.ReadForm limits the total memory a parsed multipart form can consume. ReadForm can undercount the amount of memory consumed, leading it to accept larger inputs than intended. 2. Limiting total memory does not account for increased pressure on the garbage collector from large numbers of small allocations in forms with many parts. 3. ReadForm can allocate a large number of short-lived buffers, further increasing pressure on the garbage collector. The combination of these factors can permit an attacker to cause an program that parses multipart forms to consume large amounts of CPU and memory, potentially resulting in a denial of service. This affects programs that use mime/multipart.Reader.ReadForm, as well as form parsing in the net/http package with the Request methods FormFile, FormValue, ParseMultipartForm, and PostFormValue. With fix, ReadForm now does a better job of estimating the memory consumption of parsed forms, and performs many fewer short-lived allocations. In addition, the fixed mime/multipart.Reader imposes the following limits on the size of parsed forms: 1. Forms parsed with ReadForm may contain no more than 1000 parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxparts=. 2. Form parts parsed with NextPart and NextRawPart may contain no more than 10,000 header fields. In addition, forms parsed with ReadForm may contain no more than 10,000 header fields across all parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxheaders=. |
| HTTP and MIME header parsing can allocate large amounts of memory, even when parsing small inputs, potentially leading to a denial of service. Certain unusual patterns of input data can cause the common function used to parse HTTP and MIME headers to allocate substantially more memory than required to hold the parsed headers. An attacker can exploit this behavior to cause an HTTP server to allocate large amounts of memory from a small request, potentially leading to memory exhaustion and a denial of service. With fix, header parsing now correctly allocates only the memory required to hold parsed headers. |
| A security issue was discovered in Kubelet that allows pods to bypass the seccomp profile enforcement. Pods that use localhost type for seccomp profile but specify an empty profile field, are affected by this issue. In this scenario, this vulnerability allows the pod to run in unconfined (seccomp disabled) mode. This bug affects Kubelet. |
| HashiCorp Vault's PKI mount issuer endpoints did not correctly authorize access to remove an issuer or modify issuer metadata, potentially resulting in denial of service of the PKI mount. This bug did not affect public or private key material, trust chains or certificate issuance. Fixed in Vault 1.13.1, 1.12.5, and 1.11.9. |
| HashiCorp Vault and Vault Enterprise versions 0.8.0 through 1.13.1 are vulnerable to an SQL injection attack when configuring the Microsoft SQL (MSSQL) Database Storage Backend. When configuring the MSSQL plugin through the local, certain parameters are not sanitized when passed to the user-provided MSSQL database. An attacker may modify these parameters to execute a malicious SQL command.
This issue is fixed in versions 1.13.1, 1.12.5, and 1.11.9. |
| An attacker can cause excessive memory growth in a Go server accepting HTTP/2 requests. HTTP/2 server connections contain a cache of HTTP header keys sent by the client. While the total number of entries in this cache is capped, an attacker sending very large keys can cause the server to allocate approximately 64 MiB per open connection. |
| Programs which compile regular expressions from untrusted sources may be vulnerable to memory exhaustion or denial of service. The parsed regexp representation is linear in the size of the input, but in some cases the constant factor can be as high as 40,000, making relatively small regexps consume much larger amounts of memory. After fix, each regexp being parsed is limited to a 256 MB memory footprint. Regular expressions whose representation would use more space than that are rejected. Normal use of regular expressions is unaffected. |
| Requests forwarded by ReverseProxy include the raw query parameters from the inbound request, including unparsable parameters rejected by net/http. This could permit query parameter smuggling when a Go proxy forwards a parameter with an unparsable value. After fix, ReverseProxy sanitizes the query parameters in the forwarded query when the outbound request's Form field is set after the ReverseProxy. Director function returns, indicating that the proxy has parsed the query parameters. Proxies which do not parse query parameters continue to forward the original query parameters unchanged. |
| Reader.Read does not set a limit on the maximum size of file headers. A maliciously crafted archive could cause Read to allocate unbounded amounts of memory, potentially causing resource exhaustion or panics. After fix, Reader.Read limits the maximum size of header blocks to 1 MiB. |
| jsonwebtoken is an implementation of JSON Web Tokens. Versions `<= 8.5.1` of `jsonwebtoken` library can be misconfigured so that passing a poorly implemented key retrieval function referring to the `secretOrPublicKey` argument from the readme link will result in incorrect verification of tokens. There is a possibility of using a different algorithm and key combination in verification, other than the one that was used to sign the tokens. Specifically, tokens signed with an asymmetric public key could be verified with a symmetric HS256 algorithm. This can lead to successful validation of forged tokens. If your application is supporting usage of both symmetric key and asymmetric key in jwt.verify() implementation with the same key retrieval function. This issue has been patched, please update to version 9.0.0. |
| The fix for CVE-2020-9484 was incomplete. When using Apache Tomcat 10.0.0-M1 to 10.0.0, 9.0.0.M1 to 9.0.41, 8.5.0 to 8.5.61 or 7.0.0. to 7.0.107 with a configuration edge case that was highly unlikely to be used, the Tomcat instance was still vulnerable to CVE-2020-9494. Note that both the previously published prerequisites for CVE-2020-9484 and the previously published mitigations for CVE-2020-9484 also apply to this issue. |
| When responding to new h2c connection requests, Apache Tomcat versions 10.0.0-M1 to 10.0.0, 9.0.0.M1 to 9.0.41 and 8.5.0 to 8.5.61 could duplicate request headers and a limited amount of request body from one request to another meaning user A and user B could both see the results of user A's request. |