| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Insufficient data validation in Systems Extensions in Google Chrome on ChromeOS prior to 116.0.5845.120 allowed an attacker who convinced a user to install a malicious extension to bypass file restrictions via a crafted HTML page. (Chromium security severity: Medium) |
| In hasPermissionForActivity of PackageManagerHelper.java, there is a possible way to start arbitrary components due to a confused deputy. This could lead to local escalation of privilege with no additional execution privileges needed. User interaction is needed for exploitation. |
| SQLite through 3.40.0, when relying on --safe for execution of an untrusted CLI script, does not properly implement the azProhibitedFunctions protection mechanism, and instead allows UDF functions such as WRITEFILE. |
| A maliciously crafted HTTP/2 stream could cause excessive CPU consumption in the HPACK decoder, sufficient to cause a denial of service from a small number of small requests. |
| An issue was discovered in the Linux kernel through 5.18.14. xfrm_expand_policies in net/xfrm/xfrm_policy.c can cause a refcount to be dropped twice. |
| Database connections on deleted users could stay active on MySQL data sources in Remote Desktop Manager 2022.3.7 and below which allow deleted users to access unauthorized data.
This issue affects :
Remote Desktop Manager 2022.3.7 and prior versions.
|
| "IBM InfoSphere Information Server 11.7 could allow an authenticated user to access information restricted to users with elevated privileges due to improper access controls. IBM X-Force ID: 224427." |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix mb_cache_entry's e_refcnt leak in ext4_xattr_block_cache_find()
Syzbot reports a warning as follows:
============================================
WARNING: CPU: 0 PID: 5075 at fs/mbcache.c:419 mb_cache_destroy+0x224/0x290
Modules linked in:
CPU: 0 PID: 5075 Comm: syz-executor199 Not tainted 6.9.0-rc6-gb947cc5bf6d7
RIP: 0010:mb_cache_destroy+0x224/0x290 fs/mbcache.c:419
Call Trace:
<TASK>
ext4_put_super+0x6d4/0xcd0 fs/ext4/super.c:1375
generic_shutdown_super+0x136/0x2d0 fs/super.c:641
kill_block_super+0x44/0x90 fs/super.c:1675
ext4_kill_sb+0x68/0xa0 fs/ext4/super.c:7327
[...]
============================================
This is because when finding an entry in ext4_xattr_block_cache_find(), if
ext4_sb_bread() returns -ENOMEM, the ce's e_refcnt, which has already grown
in the __entry_find(), won't be put away, and eventually trigger the above
issue in mb_cache_destroy() due to reference count leakage.
So call mb_cache_entry_put() on the -ENOMEM error branch as a quick fix. |
| In the Linux kernel, the following vulnerability has been resolved:
ax25: Fix reference count leak issues of ax25_dev
The ax25_addr_ax25dev() and ax25_dev_device_down() exist a reference
count leak issue of the object "ax25_dev".
Memory leak issue in ax25_addr_ax25dev():
The reference count of the object "ax25_dev" can be increased multiple
times in ax25_addr_ax25dev(). This will cause a memory leak.
Memory leak issues in ax25_dev_device_down():
The reference count of ax25_dev is set to 1 in ax25_dev_device_up() and
then increase the reference count when ax25_dev is added to ax25_dev_list.
As a result, the reference count of ax25_dev is 2. But when the device is
shutting down. The ax25_dev_device_down() drops the reference count once
or twice depending on if we goto unlock_put or not, which will cause
memory leak.
As for the issue of ax25_addr_ax25dev(), it is impossible for one pointer
to be on a list twice. So add a break in ax25_addr_ax25dev(). As for the
issue of ax25_dev_device_down(), increase the reference count of ax25_dev
once in ax25_dev_device_up() and decrease the reference count of ax25_dev
after it is removed from the ax25_dev_list. |
| In the Linux kernel, the following vulnerability has been resolved:
ax25: Fix reference count leak issue of net_device
There is a reference count leak issue of the object "net_device" in
ax25_dev_device_down(). When the ax25 device is shutting down, the
ax25_dev_device_down() drops the reference count of net_device one
or zero times depending on if we goto unlock_put or not, which will
cause memory leak.
In order to solve the above issue, decrease the reference count of
net_device after dev->ax25_ptr is set to null. |
| In the Linux kernel, the following vulnerability has been resolved:
pinctrl: devicetree: fix refcount leak in pinctrl_dt_to_map()
If we fail to allocate propname buffer, we need to drop the reference
count we just took. Because the pinctrl_dt_free_maps() includes the
droping operation, here we call it directly. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: fix to drop meta_inode's page cache in f2fs_put_super()
syzbot reports a kernel bug as below:
F2FS-fs (loop1): detect filesystem reference count leak during umount, type: 10, count: 1
kernel BUG at fs/f2fs/super.c:1639!
CPU: 0 PID: 15451 Comm: syz-executor.1 Not tainted 6.5.0-syzkaller-09338-ge0152e7481c6 #0
RIP: 0010:f2fs_put_super+0xce1/0xed0 fs/f2fs/super.c:1639
Call Trace:
generic_shutdown_super+0x161/0x3c0 fs/super.c:693
kill_block_super+0x3b/0x70 fs/super.c:1646
kill_f2fs_super+0x2b7/0x3d0 fs/f2fs/super.c:4879
deactivate_locked_super+0x9a/0x170 fs/super.c:481
deactivate_super+0xde/0x100 fs/super.c:514
cleanup_mnt+0x222/0x3d0 fs/namespace.c:1254
task_work_run+0x14d/0x240 kernel/task_work.c:179
resume_user_mode_work include/linux/resume_user_mode.h:49 [inline]
exit_to_user_mode_loop kernel/entry/common.c:171 [inline]
exit_to_user_mode_prepare+0x210/0x240 kernel/entry/common.c:204
__syscall_exit_to_user_mode_work kernel/entry/common.c:285 [inline]
syscall_exit_to_user_mode+0x1d/0x60 kernel/entry/common.c:296
do_syscall_64+0x44/0xb0 arch/x86/entry/common.c:86
entry_SYSCALL_64_after_hwframe+0x63/0xcd
In f2fs_put_super(), it tries to do sanity check on dirty and IO
reference count of f2fs, once there is any reference count leak,
it will trigger panic.
The root case is, during f2fs_put_super(), if there is any IO error
in f2fs_wait_on_all_pages(), we missed to truncate meta_inode's page
cache later, result in panic, fix this case. |
| In the Linux kernel, the following vulnerability has been resolved:
riscv: Prevent a bad reference count on CPU nodes
When populating cache leaves we previously fetched the CPU device node
at the very beginning. But when ACPI is enabled we go through a
specific branch which returns early and does not call 'of_node_put' for
the node that was acquired.
Since we are not using a CPU device node for the ACPI code anyways, we
can simply move the initialization of it just passed the ACPI block, and
we are guaranteed to have an 'of_node_put' call for the acquired node.
This prevents a bad reference count of the CPU device node.
Moreover, the previous function did not check for errors when acquiring
the device node, so a return -ENOENT has been added for that case. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix improper handling of refcount in ice_dpll_init_rclk_pins()
This patch addresses a reference count handling issue in the
ice_dpll_init_rclk_pins() function. The function calls ice_dpll_get_pins(),
which increments the reference count of the relevant resources. However,
if the condition WARN_ON((!vsi || !vsi->netdev)) is met, the function
currently returns an error without properly releasing the resources
acquired by ice_dpll_get_pins(), leading to a reference count leak.
To resolve this, the check has been moved to the top of the function. This
ensures that the function verifies the state before any resources are
acquired, avoiding the need for additional resource management in the
error path.
This bug was identified by an experimental static analysis tool developed
by our team. The tool specializes in analyzing reference count operations
and detecting potential issues where resources are not properly managed.
In this case, the tool flagged the missing release operation as a
potential problem, which led to the development of this patch. |
| In the Linux kernel, the following vulnerability has been resolved:
ice: Fix improper handling of refcount in ice_sriov_set_msix_vec_count()
This patch addresses an issue with improper reference count handling in the
ice_sriov_set_msix_vec_count() function.
First, the function calls ice_get_vf_by_id(), which increments the
reference count of the vf pointer. If the subsequent call to
ice_get_vf_vsi() fails, the function currently returns an error without
decrementing the reference count of the vf pointer, leading to a reference
count leak. The correct behavior, as implemented in this patch, is to
decrement the reference count using ice_put_vf(vf) before returning an
error when vsi is NULL.
Second, the function calls ice_sriov_get_irqs(), which sets
vf->first_vector_idx. If this call returns a negative value, indicating an
error, the function returns an error without decrementing the reference
count of the vf pointer, resulting in another reference count leak. The
patch addresses this by adding a call to ice_put_vf(vf) before returning
an error when vf->first_vector_idx < 0.
This bug was identified by an experimental static analysis tool developed
by our team. The tool specializes in analyzing reference count operations
and identifying potential mismanagement of reference counts. In this case,
the tool flagged the missing decrement operation as a potential issue,
leading to this patch. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/hugetlb: fix memfd_pin_folios free_huge_pages leak
memfd_pin_folios followed by unpin_folios fails to restore free_huge_pages
if the pages were not already faulted in, because the folio refcount for
pages created by memfd_alloc_folio never goes to 0. memfd_pin_folios
needs another folio_put to undo the folio_try_get below:
memfd_alloc_folio()
alloc_hugetlb_folio_nodemask()
dequeue_hugetlb_folio_nodemask()
dequeue_hugetlb_folio_node_exact()
folio_ref_unfreeze(folio, 1); ; adds 1 refcount
folio_try_get() ; adds 1 refcount
hugetlb_add_to_page_cache() ; adds 512 refcount (on x86)
With the fix, after memfd_pin_folios + unpin_folios, the refcount for the
(unfaulted) page is 512, which is correct, as the refcount for a faulted
unpinned page is 513. |
| In the Linux kernel, the following vulnerability has been resolved:
soc: qcom: icc-bwmon: Fix refcount imbalance seen during bwmon_remove
The following warning is seen during bwmon_remove due to refcount
imbalance, fix this by releasing the OPPs after use.
Logs:
WARNING: at drivers/opp/core.c:1640 _opp_table_kref_release+0x150/0x158
Hardware name: Qualcomm Technologies, Inc. X1E80100 CRD (DT)
...
Call trace:
_opp_table_kref_release+0x150/0x158
dev_pm_opp_remove_table+0x100/0x1b4
devm_pm_opp_of_table_release+0x10/0x1c
devm_action_release+0x14/0x20
devres_release_all+0xa4/0x104
device_unbind_cleanup+0x18/0x60
device_release_driver_internal+0x1ec/0x228
driver_detach+0x50/0x98
bus_remove_driver+0x6c/0xbc
driver_unregister+0x30/0x60
platform_driver_unregister+0x14/0x20
bwmon_driver_exit+0x18/0x524 [icc_bwmon]
__arm64_sys_delete_module+0x184/0x264
invoke_syscall+0x48/0x118
el0_svc_common.constprop.0+0xc8/0xe8
do_el0_svc+0x20/0x2c
el0_svc+0x34/0xdc
el0t_64_sync_handler+0x13c/0x158
el0t_64_sync+0x190/0x194
--[ end trace 0000000000000000 ]--- |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: use memtostr_pad() for s_volume_name
As with the other strings in struct ext4_super_block, s_volume_name is
not NUL terminated. The other strings were marked in commit 072ebb3bffe6
("ext4: add nonstring annotations to ext4.h"). Using strscpy() isn't
the right replacement for strncpy(); it should use memtostr_pad()
instead. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix overlapping copy within dml_core_mode_programming
[WHY]
&mode_lib->mp.Watermark and &locals->Watermark are
the same address. memcpy may lead to unexpected behavior.
[HOW]
memmove should be used. |
| In the Linux kernel, the following vulnerability has been resolved:
s390/pkey: Wipe copies of protected- and secure-keys
Although the clear-key of neither protected- nor secure-keys is
accessible, this key material should only be visible to the calling
process. So wipe all copies of protected- or secure-keys from stack,
even in case of an error. |