CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Unspecified vulnerability in FFmpeg before 0.10.3 has unknown impact and attack vectors, a different vulnerability than CVE-2012-2771, CVE-2012-2773, CVE-2012-2778, and CVE-2012-2781. |
Unspecified vulnerability in FFmpeg before 0.10.3 has unknown impact and attack vectors, a different vulnerability than CVE-2012-2771, CVE-2012-2773, CVE-2012-2778, and CVE-2012-2780. |
FFmpeg before 2017-01-24 has an out-of-bounds write caused by a heap-based buffer overflow related to the ipvideo_decode_block_opcode_0xA function in libavcodec/interplayvideo.c and the avcodec_align_dimensions2 function in libavcodec/utils.c. |
The VC-2 Video Compression encoder in FFmpeg 3.0 and 3.4 allows remote attackers to cause a denial of service (out-of-bounds read) because of incorrect buffer padding for non-Haar wavelets, related to libavcodec/vc2enc.c and libavcodec/vc2enc_dwt.c. |
The dnxhd decoder in FFmpeg before 3.2.6, and 3.3.x before 3.3.3 allows remote attackers to cause a denial of service (NULL pointer dereference) via a crafted mov file. |
Unspecified vulnerability in FFmpeg before 0.10.3 has unknown impact and attack vectors, a different vulnerability than CVE-2012-2773, CVE-2012-2778, CVE-2012-2780, and CVE-2012-2781. |
Unspecified vulnerability in FFmpeg before 0.10.3 has unknown impact and attack vectors, a different vulnerability than CVE-2012-2771, CVE-2012-2773, CVE-2012-2780, and CVE-2012-2781. |
Double free vulnerability in FFmpeg 3.3.4 and earlier allows remote attackers to cause a denial of service via a crafted AVI file. |
Unspecified vulnerability in FFMPEG 0.10 allows remote attackers to cause a denial of service. |
In libavformat/mov.c in FFmpeg 3.3.3, a DoS in read_tfra() due to lack of an EOF (End of File) check might cause huge CPU and memory consumption. When a crafted MOV file, which claims a large "item_count" field in the header but does not contain sufficient backing data, is provided, the loop would consume huge CPU and memory resources, since there is no EOF check inside the loop. |
The swri_audio_convert function in audioconvert.c in FFmpeg libswresample through 3.0.101, as used in FFmpeg 3.4.1, aubio 0.4.6, and other products, allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via a crafted audio file. |
The dnxhd_decode_header function in libavcodec/dnxhddec.c in FFmpeg 3.0 through 3.3.2 allows remote attackers to cause a denial of service (out-of-array access) or possibly have unspecified other impact via a crafted DNxHD file. |
Integer overflow in the mov_build_index function in libavformat/mov.c in FFmpeg before 2.8.8, 3.0.x before 3.0.3 and 3.1.x before 3.1.1 allows remote attackers to have unspecified impact via vectors involving sample size. |
libavcodec/webp.c in FFmpeg before 2.8.12, 3.0.x before 3.0.8, 3.1.x before 3.1.8, 3.2.x before 3.2.5, and 3.3.x before 3.3.1 does not ensure that pix_fmt is set, which allows remote attackers to cause a denial of service (heap-based buffer overflow and application crash) or possibly have unspecified other impact via a crafted file, related to the vp8_decode_mb_row_no_filter and pred8x8_128_dc_8_c functions. |
The gmc_mmx function in libavcodec/x86/mpegvideodsp.c in FFmpeg 2.3 and 3.4 does not properly validate widths and heights, which allows remote attackers to cause a denial of service (integer signedness error and out-of-array read) via a crafted MPEG file. |
FFmpeg before 2017-03-05 has an out-of-bounds write caused by a heap-based buffer overflow related to the ff_h264_slice_context_init function in libavcodec/h264dec.c. |
In libavformat/rmdec.c in FFmpeg 3.3.3, a DoS in ivr_read_header() due to lack of an EOF (End of File) check might cause huge CPU consumption. When a crafted IVR file, which claims a large "len" field in the header but does not contain sufficient backing data, is provided, the first type==4 loop would consume huge CPU resources, since there is no EOF check inside the loop. |
The read_header function in libavcodec/ffv1dec.c in FFmpeg 2.4 and 3.3.4 and possibly earlier allows remote attackers to have unspecified impact via a crafted MP4 file, which triggers an out-of-bounds read. |
The av_color_primaries_name function in libavutil/pixdesc.c in FFmpeg 3.3.3 may return a NULL pointer depending on a value contained in a file, but callers do not anticipate this, as demonstrated by the avcodec_string function in libavcodec/utils.c, leading to a NULL pointer dereference. (It is also conceivable that there is security relevance for a NULL pointer dereference in av_color_primaries_name calls within the ffprobe command-line program.) |
In FFmpeg 3.3.3, a DoS in asf_read_marker() due to lack of an EOF (End of File) check might cause huge CPU and memory consumption. When a crafted ASF file, which claims a large "name_len" or "count" field in the header but does not contain sufficient backing data, is provided, the loops over the name and markers would consume huge CPU and memory resources, since there is no EOF check inside these loops. |