CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A permissions issue was addressed with additional restrictions. This issue is fixed in watchOS 26, tvOS 26, macOS Tahoe 26, iOS 26 and iPadOS 26. An app may be able to break out of its sandbox. |
A permissions issue was addressed with additional sandbox restrictions. This issue is fixed in macOS Sequoia 15.7, macOS Sonoma 14.8, iOS 18.7 and iPadOS 18.7, macOS Tahoe 26, iOS 26 and iPadOS 26. A shortcut may be able to bypass sandbox restrictions. |
In the Linux kernel, the following vulnerability has been resolved:
efi: stmm: Fix incorrect buffer allocation method
The communication buffer allocated by setup_mm_hdr() is later on passed
to tee_shm_register_kernel_buf(). The latter expects those buffers to be
contiguous pages, but setup_mm_hdr() just uses kmalloc(). That can cause
various corruptions or BUGs, specifically since commit 9aec2fb0fd5e
("slab: allocate frozen pages"), though it was broken before as well.
Fix this by using alloc_pages_exact() instead of kmalloc(). |
In the Linux kernel, the following vulnerability has been resolved:
xfs: do not propagate ENODATA disk errors into xattr code
ENODATA (aka ENOATTR) has a very specific meaning in the xfs xattr code;
namely, that the requested attribute name could not be found.
However, a medium error from disk may also return ENODATA. At best,
this medium error may escape to userspace as "attribute not found"
when in fact it's an IO (disk) error.
At worst, we may oops in xfs_attr_leaf_get() when we do:
error = xfs_attr_leaf_hasname(args, &bp);
if (error == -ENOATTR) {
xfs_trans_brelse(args->trans, bp);
return error;
}
because an ENODATA/ENOATTR error from disk leaves us with a null bp,
and the xfs_trans_brelse will then null-deref it.
As discussed on the list, we really need to modify the lower level
IO functions to trap all disk errors and ensure that we don't let
unique errors like this leak up into higher xfs functions - many
like this should be remapped to EIO.
However, this patch directly addresses a reported bug in the xattr
code, and should be safe to backport to stable kernels. A larger-scope
patch to handle more unique errors at lower levels can follow later.
(Note, prior to 07120f1abdff we did not oops, but we did return the
wrong error code to userspace.) |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: HWS, Fix memory leak in hws_action_get_shared_stc_nic error flow
When an invalid stc_type is provided, the function allocates memory for
shared_stc but jumps to unlock_and_out without freeing it, causing a
memory leak.
Fix by jumping to free_shared_stc label instead to ensure proper cleanup. |
In the Linux kernel, the following vulnerability has been resolved:
mISDN: hfcpci: Fix warning when deleting uninitialized timer
With CONFIG_DEBUG_OBJECTS_TIMERS unloading hfcpci module leads
to the following splat:
[ 250.215892] ODEBUG: assert_init not available (active state 0) object: ffffffffc01a3dc0 object type: timer_list hint: 0x0
[ 250.217520] WARNING: CPU: 0 PID: 233 at lib/debugobjects.c:612 debug_print_object+0x1b6/0x2c0
[ 250.218775] Modules linked in: hfcpci(-) mISDN_core
[ 250.219537] CPU: 0 UID: 0 PID: 233 Comm: rmmod Not tainted 6.17.0-rc2-g6f713187ac98 #2 PREEMPT(voluntary)
[ 250.220940] Hardware name: QEMU Ubuntu 24.04 PC (i440FX + PIIX, 1996), BIOS 1.16.3-debian-1.16.3-2 04/01/2014
[ 250.222377] RIP: 0010:debug_print_object+0x1b6/0x2c0
[ 250.223131] Code: fc ff df 48 89 fa 48 c1 ea 03 80 3c 02 00 75 4f 41 56 48 8b 14 dd a0 4e 01 9f 48 89 ee 48 c7 c7 20 46 01 9f e8 cb 84d
[ 250.225805] RSP: 0018:ffff888015ea7c08 EFLAGS: 00010286
[ 250.226608] RAX: 0000000000000000 RBX: 0000000000000005 RCX: ffffffff9be93a95
[ 250.227708] RDX: 1ffff1100d945138 RSI: 0000000000000008 RDI: ffff88806ca289c0
[ 250.228993] RBP: ffffffff9f014a00 R08: 0000000000000001 R09: ffffed1002bd4f39
[ 250.230043] R10: ffff888015ea79cf R11: 0000000000000001 R12: 0000000000000001
[ 250.231185] R13: ffffffff9eea0520 R14: 0000000000000000 R15: ffff888015ea7cc8
[ 250.232454] FS: 00007f3208f01540(0000) GS:ffff8880caf5a000(0000) knlGS:0000000000000000
[ 250.233851] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 250.234856] CR2: 00007f32090a7421 CR3: 0000000004d63000 CR4: 00000000000006f0
[ 250.236117] Call Trace:
[ 250.236599] <TASK>
[ 250.236967] ? trace_irq_enable.constprop.0+0xd4/0x130
[ 250.237920] debug_object_assert_init+0x1f6/0x310
[ 250.238762] ? __pfx_debug_object_assert_init+0x10/0x10
[ 250.239658] ? __lock_acquire+0xdea/0x1c70
[ 250.240369] __try_to_del_timer_sync+0x69/0x140
[ 250.241172] ? __pfx___try_to_del_timer_sync+0x10/0x10
[ 250.242058] ? __timer_delete_sync+0xc6/0x120
[ 250.242842] ? lock_acquire+0x30/0x80
[ 250.243474] ? __timer_delete_sync+0xc6/0x120
[ 250.244262] __timer_delete_sync+0x98/0x120
[ 250.245015] HFC_cleanup+0x10/0x20 [hfcpci]
[ 250.245704] __do_sys_delete_module+0x348/0x510
[ 250.246461] ? __pfx___do_sys_delete_module+0x10/0x10
[ 250.247338] do_syscall_64+0xc1/0x360
[ 250.247924] entry_SYSCALL_64_after_hwframe+0x77/0x7f
Fix this by initializing hfc_tl timer with DEFINE_TIMER macro.
Also, use mod_timer instead of manual timeout update. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Fix lockdep assertion on sync reset unload event
Fix lockdep assertion triggered during sync reset unload event. When the
sync reset flow is initiated using the devlink reload fw_activate
option, the PF already holds the devlink lock while handling unload
event. In this case, delegate sync reset unload event handling back to
the devlink callback process to avoid double-locking and resolve the
lockdep warning.
Kernel log:
WARNING: CPU: 9 PID: 1578 at devl_assert_locked+0x31/0x40
[...]
Call Trace:
<TASK>
mlx5_unload_one_devl_locked+0x2c/0xc0 [mlx5_core]
mlx5_sync_reset_unload_event+0xaf/0x2f0 [mlx5_core]
process_one_work+0x222/0x640
worker_thread+0x199/0x350
kthread+0x10b/0x230
? __pfx_worker_thread+0x10/0x10
? __pfx_kthread+0x10/0x10
ret_from_fork+0x8e/0x100
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK> |
In the Linux kernel, the following vulnerability has been resolved:
fbnic: Move phylink resume out of service_task and into open/close
The fbnic driver was presenting with the following locking assert coming
out of a PM resume:
[ 42.208116][ T164] RTNL: assertion failed at drivers/net/phy/phylink.c (2611)
[ 42.208492][ T164] WARNING: CPU: 1 PID: 164 at drivers/net/phy/phylink.c:2611 phylink_resume+0x190/0x1e0
[ 42.208872][ T164] Modules linked in:
[ 42.209140][ T164] CPU: 1 UID: 0 PID: 164 Comm: bash Not tainted 6.17.0-rc2-virtme #134 PREEMPT(full)
[ 42.209496][ T164] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.17.0-5.fc42 04/01/2014
[ 42.209861][ T164] RIP: 0010:phylink_resume+0x190/0x1e0
[ 42.210057][ T164] Code: 83 e5 01 0f 85 b0 fe ff ff c6 05 1c cd 3e 02 01 90 ba 33 0a 00 00 48 c7 c6 20 3a 1d a5 48 c7 c7 e0 3e 1d a5 e8 21 b8 90 fe 90 <0f> 0b 90 90 e9 86 fe ff ff e8 42 ea 1f ff e9 e2 fe ff ff 48 89 ef
[ 42.210708][ T164] RSP: 0018:ffffc90000affbd8 EFLAGS: 00010296
[ 42.210983][ T164] RAX: 0000000000000000 RBX: ffff8880078d8400 RCX: 0000000000000000
[ 42.211235][ T164] RDX: 0000000000000000 RSI: 1ffffffff4f10938 RDI: 0000000000000001
[ 42.211466][ T164] RBP: 0000000000000000 R08: ffffffffa2ae79ea R09: fffffbfff4b3eb84
[ 42.211707][ T164] R10: 0000000000000003 R11: 0000000000000000 R12: ffff888007ad8000
[ 42.211997][ T164] R13: 0000000000000002 R14: ffff888006a18800 R15: ffffffffa34c59e0
[ 42.212234][ T164] FS: 00007f0dc8e39740(0000) GS:ffff88808f51f000(0000) knlGS:0000000000000000
[ 42.212505][ T164] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 42.212704][ T164] CR2: 00007f0dc8e9fe10 CR3: 000000000b56d003 CR4: 0000000000772ef0
[ 42.213227][ T164] PKRU: 55555554
[ 42.213366][ T164] Call Trace:
[ 42.213483][ T164] <TASK>
[ 42.213565][ T164] __fbnic_pm_attach.isra.0+0x8e/0xa0
[ 42.213725][ T164] pci_reset_function+0x116/0x1d0
[ 42.213895][ T164] reset_store+0xa0/0x100
[ 42.214025][ T164] ? pci_dev_reset_attr_is_visible+0x50/0x50
[ 42.214221][ T164] ? sysfs_file_kobj+0xc1/0x1e0
[ 42.214374][ T164] ? sysfs_kf_write+0x65/0x160
[ 42.214526][ T164] kernfs_fop_write_iter+0x2f8/0x4c0
[ 42.214677][ T164] ? kernfs_vma_page_mkwrite+0x1f0/0x1f0
[ 42.214836][ T164] new_sync_write+0x308/0x6f0
[ 42.214987][ T164] ? __lock_acquire+0x34c/0x740
[ 42.215135][ T164] ? new_sync_read+0x6f0/0x6f0
[ 42.215288][ T164] ? lock_acquire.part.0+0xbc/0x260
[ 42.215440][ T164] ? ksys_write+0xff/0x200
[ 42.215590][ T164] ? perf_trace_sched_switch+0x6d0/0x6d0
[ 42.215742][ T164] vfs_write+0x65e/0xbb0
[ 42.215876][ T164] ksys_write+0xff/0x200
[ 42.215994][ T164] ? __ia32_sys_read+0xc0/0xc0
[ 42.216141][ T164] ? do_user_addr_fault+0x269/0x9f0
[ 42.216292][ T164] ? rcu_is_watching+0x15/0xd0
[ 42.216442][ T164] do_syscall_64+0xbb/0x360
[ 42.216591][ T164] entry_SYSCALL_64_after_hwframe+0x4b/0x53
[ 42.216784][ T164] RIP: 0033:0x7f0dc8ea9986
A bit of digging showed that we were invoking the phylink_resume as a part
of the fbnic_up path when we were enabling the service task while not
holding the RTNL lock. We should be enabling this sooner as a part of the
ndo_open path and then just letting the service task come online later.
This will help to enforce the correct locking and brings the phylink
interface online at the same time as the network interface, instead of at a
later time.
I tested this on QEMU to verify this was working by putting the system to
sleep using "echo mem > /sys/power/state" to put the system to sleep in the
guest and then using the command "system_wakeup" in the QEMU monitor. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: HWS, Fix memory leak in hws_pool_buddy_init error path
In the error path of hws_pool_buddy_init(), the buddy allocator cleanup
doesn't free the allocator structure itself, causing a memory leak.
Add the missing kfree() to properly release all allocated memory. |
A race condition was addressed with improved state handling. This issue is fixed in macOS Sequoia 15.7, macOS Sonoma 14.8, macOS Tahoe 26. An app may be able to gain root privileges. |
In the Linux kernel, the following vulnerability has been resolved:
trace/fgraph: Fix the warning caused by missing unregister notifier
This warning was triggered during testing on v6.16:
notifier callback ftrace_suspend_notifier_call already registered
WARNING: CPU: 2 PID: 86 at kernel/notifier.c:23 notifier_chain_register+0x44/0xb0
...
Call Trace:
<TASK>
blocking_notifier_chain_register+0x34/0x60
register_ftrace_graph+0x330/0x410
ftrace_profile_write+0x1e9/0x340
vfs_write+0xf8/0x420
? filp_flush+0x8a/0xa0
? filp_close+0x1f/0x30
? do_dup2+0xaf/0x160
ksys_write+0x65/0xe0
do_syscall_64+0xa4/0x260
entry_SYSCALL_64_after_hwframe+0x77/0x7f
When writing to the function_profile_enabled interface, the notifier was
not unregistered after start_graph_tracing failed, causing a warning the
next time function_profile_enabled was written.
Fixed by adding unregister_pm_notifier in the exception path. |
In the Linux kernel, the following vulnerability has been resolved:
atm: atmtcp: Prevent arbitrary write in atmtcp_recv_control().
syzbot reported the splat below. [0]
When atmtcp_v_open() or atmtcp_v_close() is called via connect()
or close(), atmtcp_send_control() is called to send an in-kernel
special message.
The message has ATMTCP_HDR_MAGIC in atmtcp_control.hdr.length.
Also, a pointer of struct atm_vcc is set to atmtcp_control.vcc.
The notable thing is struct atmtcp_control is uAPI but has a
space for an in-kernel pointer.
struct atmtcp_control {
struct atmtcp_hdr hdr; /* must be first */
...
atm_kptr_t vcc; /* both directions */
...
} __ATM_API_ALIGN;
typedef struct { unsigned char _[8]; } __ATM_API_ALIGN atm_kptr_t;
The special message is processed in atmtcp_recv_control() called
from atmtcp_c_send().
atmtcp_c_send() is vcc->dev->ops->send() and called from 2 paths:
1. .ndo_start_xmit() (vcc->send() == atm_send_aal0())
2. vcc_sendmsg()
The problem is sendmsg() does not validate the message length and
userspace can abuse atmtcp_recv_control() to overwrite any kptr
by atmtcp_control.
Let's add a new ->pre_send() hook to validate messages from sendmsg().
[0]:
Oops: general protection fault, probably for non-canonical address 0xdffffc00200000ab: 0000 [#1] SMP KASAN PTI
KASAN: probably user-memory-access in range [0x0000000100000558-0x000000010000055f]
CPU: 0 UID: 0 PID: 5865 Comm: syz-executor331 Not tainted 6.17.0-rc1-syzkaller-00215-gbab3ce404553 #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 07/12/2025
RIP: 0010:atmtcp_recv_control drivers/atm/atmtcp.c:93 [inline]
RIP: 0010:atmtcp_c_send+0x1da/0x950 drivers/atm/atmtcp.c:297
Code: 4d 8d 75 1a 4c 89 f0 48 c1 e8 03 42 0f b6 04 20 84 c0 0f 85 15 06 00 00 41 0f b7 1e 4d 8d b7 60 05 00 00 4c 89 f0 48 c1 e8 03 <42> 0f b6 04 20 84 c0 0f 85 13 06 00 00 66 41 89 1e 4d 8d 75 1c 4c
RSP: 0018:ffffc90003f5f810 EFLAGS: 00010203
RAX: 00000000200000ab RBX: 0000000000000000 RCX: 0000000000000000
RDX: ffff88802a510000 RSI: 00000000ffffffff RDI: ffff888030a6068c
RBP: ffff88802699fb40 R08: ffff888030a606eb R09: 1ffff1100614c0dd
R10: dffffc0000000000 R11: ffffffff8718fc40 R12: dffffc0000000000
R13: ffff888030a60680 R14: 000000010000055f R15: 00000000ffffffff
FS: 00007f8d7e9236c0(0000) GS:ffff888125c1c000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 000000000045ad50 CR3: 0000000075bde000 CR4: 00000000003526f0
Call Trace:
<TASK>
vcc_sendmsg+0xa10/0xc60 net/atm/common.c:645
sock_sendmsg_nosec net/socket.c:714 [inline]
__sock_sendmsg+0x219/0x270 net/socket.c:729
____sys_sendmsg+0x505/0x830 net/socket.c:2614
___sys_sendmsg+0x21f/0x2a0 net/socket.c:2668
__sys_sendmsg net/socket.c:2700 [inline]
__do_sys_sendmsg net/socket.c:2705 [inline]
__se_sys_sendmsg net/socket.c:2703 [inline]
__x64_sys_sendmsg+0x19b/0x260 net/socket.c:2703
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xfa/0x3b0 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f8d7e96a4a9
Code: 28 00 00 00 75 05 48 83 c4 28 c3 e8 51 18 00 00 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 b0 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f8d7e923198 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f8d7e9f4308 RCX: 00007f8d7e96a4a9
RDX: 0000000000000000 RSI: 0000200000000240 RDI: 0000000000000005
RBP: 00007f8d7e9f4300 R08: 65732f636f72702f R09: 65732f636f72702f
R10: 65732f636f72702f R11: 0000000000000246 R12: 00007f8d7e9c10ac
R13: 00007f8d7e9231a0 R14: 0000200000000200 R15: 0000200000000250
</TASK>
Modules linked in: |
In the Linux kernel, the following vulnerability has been resolved:
net: rose: include node references in rose_neigh refcount
Current implementation maintains two separate reference counting
mechanisms: the 'count' field in struct rose_neigh tracks references from
rose_node structures, while the 'use' field (now refcount_t) tracks
references from rose_sock.
This patch merges these two reference counting systems using 'use' field
for proper reference management. Specifically, this patch adds incrementing
and decrementing of rose_neigh->use when rose_neigh->count is incremented
or decremented.
This patch also modifies rose_rt_free(), rose_rt_device_down() and
rose_clear_route() to properly release references to rose_neigh objects
before freeing a rose_node through rose_remove_node().
These changes ensure rose_neigh structures are properly freed only when
all references, including those from rose_node structures, are released.
As a result, this resolves a slab-use-after-free issue reported by Syzbot. |
In the Linux kernel, the following vulnerability has been resolved:
net: rose: convert 'use' field to refcount_t
The 'use' field in struct rose_neigh is used as a reference counter but
lacks atomicity. This can lead to race conditions where a rose_neigh
structure is freed while still being referenced by other code paths.
For example, when rose_neigh->use becomes zero during an ioctl operation
via rose_rt_ioctl(), the structure may be removed while its timer is
still active, potentially causing use-after-free issues.
This patch changes the type of 'use' from unsigned short to refcount_t and
updates all code paths to use rose_neigh_hold() and rose_neigh_put() which
operate reference counts atomically. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix race with concurrent opens in rename(2)
Besides sending the rename request to the server, the rename process
also involves closing any deferred close, waiting for outstanding I/O
to complete as well as marking all existing open handles as deleted to
prevent them from deferring closes, which increases the race window
for potential concurrent opens on the target file.
Fix this by unhashing the dentry in advance to prevent any concurrent
opens on the target. |
In the Linux kernel, the following vulnerability has been resolved:
HID: asus: fix UAF via HID_CLAIMED_INPUT validation
After hid_hw_start() is called hidinput_connect() will eventually be
called to set up the device with the input layer since the
HID_CONNECT_DEFAULT connect mask is used. During hidinput_connect()
all input and output reports are processed and corresponding hid_inputs
are allocated and configured via hidinput_configure_usages(). This
process involves slot tagging report fields and configuring usages
by setting relevant bits in the capability bitmaps. However it is possible
that the capability bitmaps are not set at all leading to the subsequent
hidinput_has_been_populated() check to fail leading to the freeing of the
hid_input and the underlying input device.
This becomes problematic because a malicious HID device like a
ASUS ROG N-Key keyboard can trigger the above scenario via a
specially crafted descriptor which then leads to a user-after-free
when the name of the freed input device is written to later on after
hid_hw_start(). Below, report 93 intentionally utilises the
HID_UP_UNDEFINED Usage Page which is skipped during usage
configuration, leading to the frees.
0x05, 0x0D, // Usage Page (Digitizer)
0x09, 0x05, // Usage (Touch Pad)
0xA1, 0x01, // Collection (Application)
0x85, 0x0D, // Report ID (13)
0x06, 0x00, 0xFF, // Usage Page (Vendor Defined 0xFF00)
0x09, 0xC5, // Usage (0xC5)
0x15, 0x00, // Logical Minimum (0)
0x26, 0xFF, 0x00, // Logical Maximum (255)
0x75, 0x08, // Report Size (8)
0x95, 0x04, // Report Count (4)
0xB1, 0x02, // Feature (Data,Var,Abs)
0x85, 0x5D, // Report ID (93)
0x06, 0x00, 0x00, // Usage Page (Undefined)
0x09, 0x01, // Usage (0x01)
0x15, 0x00, // Logical Minimum (0)
0x26, 0xFF, 0x00, // Logical Maximum (255)
0x75, 0x08, // Report Size (8)
0x95, 0x1B, // Report Count (27)
0x81, 0x02, // Input (Data,Var,Abs)
0xC0, // End Collection
Below is the KASAN splat after triggering the UAF:
[ 21.672709] ==================================================================
[ 21.673700] BUG: KASAN: slab-use-after-free in asus_probe+0xeeb/0xf80
[ 21.673700] Write of size 8 at addr ffff88810a0ac000 by task kworker/1:2/54
[ 21.673700]
[ 21.673700] CPU: 1 UID: 0 PID: 54 Comm: kworker/1:2 Not tainted 6.16.0-rc4-g9773391cf4dd-dirty #36 PREEMPT(voluntary)
[ 21.673700] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.2-debian-1.16.2-1 04/01/2014
[ 21.673700] Call Trace:
[ 21.673700] <TASK>
[ 21.673700] dump_stack_lvl+0x5f/0x80
[ 21.673700] print_report+0xd1/0x660
[ 21.673700] kasan_report+0xe5/0x120
[ 21.673700] __asan_report_store8_noabort+0x1b/0x30
[ 21.673700] asus_probe+0xeeb/0xf80
[ 21.673700] hid_device_probe+0x2ee/0x700
[ 21.673700] really_probe+0x1c6/0x6b0
[ 21.673700] __driver_probe_device+0x24f/0x310
[ 21.673700] driver_probe_device+0x4e/0x220
[...]
[ 21.673700]
[ 21.673700] Allocated by task 54:
[ 21.673700] kasan_save_stack+0x3d/0x60
[ 21.673700] kasan_save_track+0x18/0x40
[ 21.673700] kasan_save_alloc_info+0x3b/0x50
[ 21.673700] __kasan_kmalloc+0x9c/0xa0
[ 21.673700] __kmalloc_cache_noprof+0x139/0x340
[ 21.673700] input_allocate_device+0x44/0x370
[ 21.673700] hidinput_connect+0xcb6/0x2630
[ 21.673700] hid_connect+0xf74/0x1d60
[ 21.673700] hid_hw_start+0x8c/0x110
[ 21.673700] asus_probe+0x5a3/0xf80
[ 21.673700] hid_device_probe+0x2ee/0x700
[ 21.673700] really_probe+0x1c6/0x6b0
[ 21.673700] __driver_probe_device+0x24f/0x310
[ 21.673700] driver_probe_device+0x4e/0x220
[...]
[ 21.673700]
[ 21.673700] Freed by task 54:
[ 21.673700] kasan_save_stack+0x3d/0x60
[ 21.673700] kasan_save_track+0x18/0x40
[ 21.673700] kasan_save_free_info+0x3f/0x60
[ 21.673700] __kasan_slab_free+0x3c/0x50
[ 21.673700] kfre
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
KVM: x86: use array_index_nospec with indices that come from guest
min and dest_id are guest-controlled indices. Using array_index_nospec()
after the bounds checks clamps these values to mitigate speculative execution
side-channels. |
In the Linux kernel, the following vulnerability has been resolved:
io_uring/kbuf: fix signedness in this_len calculation
When importing and using buffers, buf->len is considered unsigned.
However, buf->len is converted to signed int when committing. This can
lead to unexpected behavior if the buffer is large enough to be
interpreted as a negative value. Make min_t calculation unsigned. |
In the Linux kernel, the following vulnerability has been resolved:
perf: Avoid undefined behavior from stopping/starting inactive events
Calling pmu->start()/stop() on perf events in PERF_EVENT_STATE_OFF can
leave event->hw.idx at -1. When PMU drivers later attempt to use this
negative index as a shift exponent in bitwise operations, it leads to UBSAN
shift-out-of-bounds reports.
The issue is a logical flaw in how event groups handle throttling when some
members are intentionally disabled. Based on the analysis and the
reproducer provided by Mark Rutland (this issue on both arm64 and x86-64).
The scenario unfolds as follows:
1. A group leader event is configured with a very aggressive sampling
period (e.g., sample_period = 1). This causes frequent interrupts and
triggers the throttling mechanism.
2. A child event in the same group is created in a disabled state
(.disabled = 1). This event remains in PERF_EVENT_STATE_OFF.
Since it hasn't been scheduled onto the PMU, its event->hw.idx remains
initialized at -1.
3. When throttling occurs, perf_event_throttle_group() and later
perf_event_unthrottle_group() iterate through all siblings, including
the disabled child event.
4. perf_event_throttle()/unthrottle() are called on this inactive child
event, which then call event->pmu->start()/stop().
5. The PMU driver receives the event with hw.idx == -1 and attempts to
use it as a shift exponent. e.g., in macros like PMCNTENSET(idx),
leading to the UBSAN report.
The throttling mechanism attempts to start/stop events that are not
actively scheduled on the hardware.
Move the state check into perf_event_throttle()/perf_event_unthrottle() so
that inactive events are skipped entirely. This ensures only active events
with a valid hw.idx are processed, preventing undefined behavior and
silencing UBSAN warnings. The corrected check ensures true before
proceeding with PMU operations.
The problem can be reproduced with the syzkaller reproducer: |
In the Linux kernel, the following vulnerability has been resolved:
drm/msm/dpu: Add a null ptr check for dpu_encoder_needs_modeset
The drm_atomic_get_new_connector_state() can return NULL if the
connector is not part of the atomic state. Add a check to prevent
a NULL pointer dereference.
This follows the same pattern used in dpu_encoder_update_topology()
within the same file, which checks for NULL before using conn_state.
Patchwork: https://patchwork.freedesktop.org/patch/665188/ |