CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Node.js before 16.6.1, 14.17.5, and 12.22.5 is vulnerable to a use after free attack where an attacker might be able to exploit the memory corruption, to change process behavior. |
Node.js before 16.6.0, 14.17.4, and 12.22.4 is vulnerable to Remote Code Execution, XSS, Application crashes due to missing input validation of host names returned by Domain Name Servers in Node.js dns library which can lead to output of wrong hostnames (leading to Domain Hijacking) and injection vulnerabilities in applications using the library. |
Node.js before 16.4.1, 14.17.2, 12.22.2 is vulnerable to an out-of-bounds read when uv__idna_toascii() is used to convert strings to ASCII. The pointer p is read and increased without checking whether it is beyond pe, with the latter holding a pointer to the end of the buffer. This can lead to information disclosures or crashes. This function can be triggered via uv_getaddrinfo(). |
Node.js before 16.4.1, 14.17.2, and 12.22.2 is vulnerable to local privilege escalation attacks under certain conditions on Windows platforms. More specifically, improper configuration of permissions in the installation directory allows an attacker to perform two different escalation attacks: PATH and DLL hijacking. |
Node.js before 16.6.0, 14.17.4, and 12.22.4 is vulnerable to a use after free attack where an attacker might be able to exploit the memory corruption, to change process behavior. |
Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to DNS rebinding attacks as the whitelist includes “localhost6”. When “localhost6” is not present in /etc/hosts, it is just an ordinary domain that is resolved via DNS, i.e., over network. If the attacker controls the victim's DNS server or can spoof its responses, the DNS rebinding protection can be bypassed by using the “localhost6” domain. As long as the attacker uses the “localhost6” domain, they can still apply the attack described in CVE-2018-7160. |
Node.js before 10.24.0, 12.21.0, 14.16.0, and 15.10.0 is vulnerable to a denial of service attack when too many connection attempts with an 'unknownProtocol' are established. This leads to a leak of file descriptors. If a file descriptor limit is configured on the system, then the server is unable to accept new connections and prevent the process also from opening, e.g. a file. If no file descriptor limit is configured, then this lead to an excessive memory usage and cause the system to run out of memory. |
Node.js versions before 10.23.1, 12.20.1, 14.15.4, 15.5.1 allow two copies of a header field in an HTTP request (for example, two Transfer-Encoding header fields). In this case, Node.js identifies the first header field and ignores the second. This can lead to HTTP Request Smuggling. |
Node.js versions before 10.23.1, 12.20.1, 14.15.4, 15.5.1 are vulnerable to a use-after-free bug in its TLS implementation. When writing to a TLS enabled socket, node::StreamBase::Write calls node::TLSWrap::DoWrite with a freshly allocated WriteWrap object as first argument. If the DoWrite method does not return an error, this object is passed back to the caller as part of a StreamWriteResult structure. This may be exploited to corrupt memory leading to a Denial of Service or potentially other exploits. |
A Node.js application that allows an attacker to trigger a DNS request for a host of their choice could trigger a Denial of Service in versions < 15.2.1, < 14.15.1, and < 12.19.1 by getting the application to resolve a DNS record with a larger number of responses. This is fixed in 15.2.1, 14.15.1, and 12.19.1. |
The implementation of realpath in libuv < 10.22.1, < 12.18.4, and < 14.9.0 used within Node.js incorrectly determined the buffer size which can result in a buffer overflow if the resolved path is longer than 256 bytes. |
Node.js < 14.11.0 is vulnerable to HTTP denial of service (DoS) attacks based on delayed requests submission which can make the server unable to accept new connections. |
Node.js < 12.18.4 and < 14.11 can be exploited to perform HTTP desync attacks and deliver malicious payloads to unsuspecting users. The payloads can be crafted by an attacker to hijack user sessions, poison cookies, perform clickjacking, and a multitude of other attacks depending on the architecture of the underlying system. The attack was possible due to a bug in processing of carrier-return symbols in the HTTP header names. |
Including trailing white space in HTTP header values in Nodejs 10, 12, and 13 causes bypass of authorization based on header value comparisons |
HTTP request smuggling in Node.js 10, 12, and 13 causes malicious payload delivery when transfer-encoding is malformed |
Improper Certificate Validation in Node.js 10, 12, and 13 causes the process to abort when sending a crafted X.509 certificate |
An untrusted search path vulnerability exists in Node.js. <19.6.1, <18.14.1, <16.19.1, and <14.21.3 that could allow an attacker to search and potentially load ICU data when running with elevated privileges. |
A cryptographic vulnerability exists in Node.js <19.2.0, <18.14.1, <16.19.1, <14.21.3 that in some cases did does not clear the OpenSSL error stack after operations that may set it. This may lead to false positive errors during subsequent cryptographic operations that happen to be on the same thread. This in turn could be used to cause a denial of service. |
A OS Command Injection vulnerability exists in Node.js versions <14.21.1, <16.18.1, <18.12.1, <19.0.1 due to an insufficient IsAllowedHost check that can easily be bypassed because IsIPAddress does not properly check if an IP address is invalid before making DBS requests allowing rebinding attacks.The fix for this issue in https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-32212 was incomplete and this new CVE is to complete the fix. |
A weak randomness in WebCrypto keygen vulnerability exists in Node.js 18 due to a change with EntropySource() in SecretKeyGenTraits::DoKeyGen() in src/crypto/crypto_keygen.cc. There are two problems with this: 1) It does not check the return value, it assumes EntropySource() always succeeds, but it can (and sometimes will) fail. 2) The random data returned byEntropySource() may not be cryptographically strong and therefore not suitable as keying material. |