| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| The receive_xattr function in xattrs.c in rsync 3.1.2 and 3.1.3-development does not check for a trailing '\0' character in an xattr name, which allows remote attackers to cause a denial of service (heap-based buffer over-read and application crash) or possibly have unspecified other impact by sending crafted data to the daemon. |
| An issue was discovered in the IPv6 protocol specification, related to ICMP Packet Too Big (PTB) messages. (The scope of this CVE is all affected IPv6 implementations from all vendors.) The security implications of IP fragmentation have been discussed at length in [RFC6274] and [RFC7739]. An attacker can leverage the generation of IPv6 atomic fragments to trigger the use of fragmentation in an arbitrary IPv6 flow (in scenarios in which actual fragmentation of packets is not needed) and can subsequently perform any type of fragmentation-based attack against legacy IPv6 nodes that do not implement [RFC6946]. That is, employing fragmentation where not actually needed allows for fragmentation-based attack vectors to be employed, unnecessarily. We note that, unfortunately, even nodes that already implement [RFC6946] can be subject to DoS attacks as a result of the generation of IPv6 atomic fragments. Let us assume that Host A is communicating with Host B and that, as a result of the widespread dropping of IPv6 packets that contain extension headers (including fragmentation) [RFC7872], some intermediate node filters fragments between Host B and Host A. If an attacker sends a forged ICMPv6 PTB error message to Host B, reporting an MTU smaller than 1280, this will trigger the generation of IPv6 atomic fragments from that moment on (as required by [RFC2460]). When Host B starts sending IPv6 atomic fragments (in response to the received ICMPv6 PTB error message), these packets will be dropped, since we previously noted that IPv6 packets with extension headers were being dropped between Host B and Host A. Thus, this situation will result in a DoS scenario. Another possible scenario is that in which two BGP peers are employing IPv6 transport and they implement Access Control Lists (ACLs) to drop IPv6 fragments (to avoid control-plane attacks). If the aforementioned BGP peers drop IPv6 fragments but still honor received ICMPv6 PTB error messages, an attacker could easily attack the corresponding peering session by simply sending an ICMPv6 PTB message with a reported MTU smaller than 1280 bytes. Once the attack packet has been sent, the aforementioned routers will themselves be the ones dropping their own traffic. |
| GNU linker (ld) in GNU Binutils 2.28 is vulnerable to a heap-based buffer overflow while processing a bogus input script, leading to a program crash. This relates to lack of '\0' termination of a name field in ldlex.l. |
| An issue was discovered in drachtio-server before 0.8.20. It allows remote attackers to cause a denial of service (daemon crash) via a long message in a TCP request that leads to std::length_error. |
| If an attacker could control the contents of an iframe sandboxed with <code>allow-popups</code> but not <code>allow-scripts</code>, they were able to craft a link that, when clicked, would lead to JavaScript execution in violation of the sandbox. This vulnerability affects Firefox < 98, Firefox ESR < 91.7, and Thunderbird < 91.7. |
| Active Directory in Microsoft Windows Server 2008 SP2 and R2 SP1 and Server 2012 Gold and R2 allows remote authenticated users to cause a denial of service (service outage) by creating multiple machine accounts, aka "Active Directory Denial of Service Vulnerability." |
| The ASN1_item_ex_d2i function in crypto/asn1/tasn_dec.c in OpenSSL before 0.9.8zf, 1.0.0 before 1.0.0r, 1.0.1 before 1.0.1m, and 1.0.2 before 1.0.2a does not reinitialize CHOICE and ADB data structures, which might allow attackers to cause a denial of service (invalid write operation and memory corruption) by leveraging an application that relies on ASN.1 structure reuse. |
| name.c in named in ISC BIND 9.7.x through 9.9.x before 9.9.7-P1 and 9.10.x before 9.10.2-P2, when configured as a recursive resolver with DNSSEC validation, allows remote attackers to cause a denial of service (REQUIRE assertion failure and daemon exit) by constructing crafted zone data and then making a query for a name in that zone. |
| The calloc function in the glibc package in Red Hat Enterprise Linux (RHEL) 6.7 and 7.2 does not properly initialize memory areas, which might allow context-dependent attackers to cause a denial of service (hang or crash) via unspecified vectors. |
| Movable Type before 5.2.6 does not properly use the Storable::thaw function, which allows remote attackers to execute arbitrary code via the comment_state parameter. |
| FreeBSD 9.1, 9.2, and 10.0, when compiling OpenSSH with Kerberos support, uses incorrect library ordering when linking sshd, which causes symbols to be resolved incorrectly and allows remote attackers to cause a denial of service (sshd deadlock and prevention of new connections) by ending multiple connections before authentication is completed. |
| Xen 4.3.x, 4.4.x, and 4.5.x, when using toolstack disaggregation, allows remote domains with partial management control to cause a denial of service (host lock) via unspecified domctl operations. |
| CFNetwork in Apple iOS before 9.1 and OS X before 10.11.1 does not properly consider the uppercase-versus-lowercase distinction during cookie parsing, which allows remote web servers to overwrite cookies via unspecified vectors. |
| Apple Mac EFI before 2015-002, as used in OS X before 10.11.1 and other products, mishandles arguments, which allows attackers to reach "unused" functions via unspecified vectors. |
| The CoreUserInputHandler::doMode function in core/coreuserinputhandler.cpp in Quassel 0.10.0 allows remote attackers to cause a denial of service (application crash) via the "/op *" command in a query. |
| Zend Framework 1 (ZF1) before 1.12.4, Zend Framework 2 before 2.1.6 and 2.2.x before 2.2.6, ZendOpenId, ZendRest, ZendService_AudioScrobbler, ZendService_Nirvanix, ZendService_SlideShare, ZendService_Technorati, and ZendService_WindowsAzure before 2.0.2, ZendService_Amazon before 2.0.3, and ZendService_Api before 1.0.0 allow remote attackers to cause a denial of service (CPU consumption) via (1) recursive or (2) circular references in an XML entity definition in an XML DOCTYPE declaration, aka an XML Entity Expansion (XEE) attack. NOTE: this issue exists because of an incomplete fix for CVE-2012-6532. |
| Mozilla Firefox before 44.0 on Android allows remote attackers to spoof the address bar via the scrollTo method. |
| The receive function in ntp_proto.c in ntpd in NTP before 4.2.8 continues to execute after detecting a certain authentication error, which might allow remote attackers to trigger an unintended association change via crafted packets. |
| ModelMultipleChoiceField in Django 1.6.x before 1.6.10 and 1.7.x before 1.7.3, when show_hidden_initial is set to True, allows remote attackers to cause a denial of service by submitting duplicate values, which triggers a large number of SQL queries. |
| The multi-block feature in the ssl3_write_bytes function in s3_pkt.c in OpenSSL 1.0.2 before 1.0.2a on 64-bit x86 platforms with AES NI support does not properly handle certain non-blocking I/O cases, which allows remote attackers to cause a denial of service (pointer corruption and application crash) via unspecified vectors. |