| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| IBM Db2 11.1.0 through 11.1.4.7, 11.5.0 through 11.5.9, and 12.1.0 through 12.1.3 for Linux, UNIX and Windows (includes Db2 Connect Server) is vulnerable to a denial of service as the server may crash under certain conditions with a specially crafted query. |
| CLUSTERPRO X for Linux 4.0, 4.1, 4.2, 5.0, 5.1 and 5.2 and EXPRESSCLUSTER X for Linux 4.0, 4.1, 4.2, 5.0, 5.1 and 5.2, CLUSTERPRO X SingleServerSafe for Linux 4.0, 4.1, 4.2, 5.0, 5.1 and 5.2, EXPRESSCLUSTER X SingleServerSafe for Linux 4.0, 4.1, 4.2, 5.0, 5.1 and 5.2 allows an attacker sends specially crafted network packets to the product, arbitrary OS commands may be executed without authentication. |
| Sandbox escape due to incorrect boundary conditions in the Graphics: WebGPU component. This vulnerability affects Firefox < 145. |
| Out-of-bounds write for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Unprivileged software adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (none) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (high) impacts. |
| Out-of-bounds write for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Unprivileged software adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (low) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (high) impacts. |
| Out-of-bounds write for some Intel(R) PROSet/Wireless WiFi Software for Windows before version 23.160 within Ring 2: Device Drivers may allow a denial of service. Unprivileged software adversary with an unauthenticated user combined with a low complexity attack may enable denial of service. This result may potentially occur via adjacent access when attack requirements are not present without special internal knowledge and requires no user interaction. The potential vulnerability may impact the confidentiality (none), integrity (low) and availability (high) of the vulnerable system, resulting in subsequent system confidentiality (none), integrity (none) and availability (high) impacts. |
| Out-of-bounds write in libimagecodec.quram.so prior to SMR Apr-2025 Release 1 allows remote attackers to execute arbitrary code. |
| The Metro Development Server, which is opened by the React Native Community CLI, binds to external interfaces by default. The server exposes an endpoint that is vulnerable to OS command injection. This allows unauthenticated network attackers to send a POST request to the server and run arbitrary executables. On Windows, the attackers can also execute arbitrary shell commands with fully controlled arguments. |
| A flaw was found in grub2. The calculation of the translation buffer when reading a language .mo file in grub_gettext_getstr_from_position() may overflow, leading to a Out-of-bound write. This issue can be leveraged by an attacker to overwrite grub2's sensitive heap data, eventually leading to the circumvention of secure boot protections. |
| A segment fault (SEGV) flaw was found in libtiff that could be triggered by passing a crafted tiff file to the TIFFReadRGBATileExt() API. This flaw allows a remote attacker to cause a heap-buffer overflow, leading to a denial of service. |
| An out-of-memory flaw was found in libtiff that could be triggered by passing a crafted tiff file to the TIFFRasterScanlineSize64() API. This flaw allows a remote attacker to cause a denial of service via a crafted input with a size smaller than 379 KB. |
| getchar.c in Vim before 8.1.1365 and Neovim before 0.3.6 allows remote attackers to execute arbitrary OS commands via the :source! command in a modeline, as demonstrated by execute in Vim, and assert_fails or nvim_input in Neovim. |
| An issue was found in the tiffcp utility distributed by the libtiff package where a crafted TIFF file on processing may cause a heap-based buffer overflow leads to an application crash. |
| The read command is used to read the keyboard input from the user, while reads it keeps the input length in a 32-bit integer value which is further used to reallocate the line buffer to accept the next character. During this process, with a line big enough it's possible to make this variable to overflow leading to a out-of-bounds write in the heap based buffer. This flaw may be leveraged to corrupt grub's internal critical data and secure boot bypass is not discarded as consequence. |
| A flaw was found in grub2. When reading a symbolic link's name from a UFS filesystem, grub2 fails to validate the string length taken as an input. The lack of validation may lead to a heap out-of-bounds write, causing data integrity issues and eventually allowing an attacker to circumvent secure boot protections. |
| When reading the language .mo file in grub_mofile_open(), grub2 fails to verify an integer overflow when allocating its internal buffer. A crafted .mo file may lead the buffer size calculation to overflow, leading to out-of-bound reads and writes. This flaw allows an attacker to leak sensitive data or overwrite critical data, possibly circumventing secure boot protections. |
| A flaw was found in grub2. During the network boot process, when trying to search for the configuration file, grub copies data from a user controlled environment variable into an internal buffer using the grub_strcpy() function. During this step, it fails to consider the environment variable length when allocating the internal buffer, resulting in an out-of-bounds write. If correctly exploited, this issue may result in remote code execution through the same network segment grub is searching for the boot information, which can be used to by-pass secure boot protections. |
| In the Linux kernel, the following vulnerability has been resolved:
net: lapbether: fix issue of invalid opcode in lapbeth_open()
If lapb_register() failed when lapb device goes to up for the first time,
the NAPI is not disabled. As a result, the invalid opcode issue is
reported when the lapb device goes to up for the second time.
The stack info is as follows:
[ 1958.311422][T11356] kernel BUG at net/core/dev.c:6442!
[ 1958.312206][T11356] invalid opcode: 0000 [#1] PREEMPT SMP KASAN
[ 1958.315979][T11356] RIP: 0010:napi_enable+0x16a/0x1f0
[ 1958.332310][T11356] Call Trace:
[ 1958.332817][T11356] <TASK>
[ 1958.336135][T11356] lapbeth_open+0x18/0x90
[ 1958.337446][T11356] __dev_open+0x258/0x490
[ 1958.341672][T11356] __dev_change_flags+0x4d4/0x6a0
[ 1958.345325][T11356] dev_change_flags+0x93/0x160
[ 1958.346027][T11356] devinet_ioctl+0x1276/0x1bf0
[ 1958.346738][T11356] inet_ioctl+0x1c8/0x2d0
[ 1958.349638][T11356] sock_ioctl+0x5d1/0x750
[ 1958.356059][T11356] __x64_sys_ioctl+0x3ec/0x1790
[ 1958.365594][T11356] do_syscall_64+0x35/0x80
[ 1958.366239][T11356] entry_SYSCALL_64_after_hwframe+0x46/0xb0
[ 1958.377381][T11356] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
tracing: Fix oob write in trace_seq_to_buffer()
syzbot reported this bug:
==================================================================
BUG: KASAN: slab-out-of-bounds in trace_seq_to_buffer kernel/trace/trace.c:1830 [inline]
BUG: KASAN: slab-out-of-bounds in tracing_splice_read_pipe+0x6be/0xdd0 kernel/trace/trace.c:6822
Write of size 4507 at addr ffff888032b6b000 by task syz.2.320/7260
CPU: 1 UID: 0 PID: 7260 Comm: syz.2.320 Not tainted 6.15.0-rc1-syzkaller-00301-g3bde70a2c827 #0 PREEMPT(full)
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 02/12/2025
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1f0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc3/0x670 mm/kasan/report.c:521
kasan_report+0xe0/0x110 mm/kasan/report.c:634
check_region_inline mm/kasan/generic.c:183 [inline]
kasan_check_range+0xef/0x1a0 mm/kasan/generic.c:189
__asan_memcpy+0x3c/0x60 mm/kasan/shadow.c:106
trace_seq_to_buffer kernel/trace/trace.c:1830 [inline]
tracing_splice_read_pipe+0x6be/0xdd0 kernel/trace/trace.c:6822
....
==================================================================
It has been reported that trace_seq_to_buffer() tries to copy more data
than PAGE_SIZE to buf. Therefore, to prevent this, we should use the
smaller of trace_seq_used(&iter->seq) and PAGE_SIZE as an argument. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/amd: Fix potential buffer overflow in parse_ivrs_acpihid
There is a string parsing logic error which can lead to an overflow of hid
or uid buffers. Comparing ACPIID_LEN against a total string length doesn't
take into account the lengths of individual hid and uid buffers so the
check is insufficient in some cases. For example if the length of hid
string is 4 and the length of the uid string is 260, the length of str
will be equal to ACPIID_LEN + 1 but uid string will overflow uid buffer
which size is 256.
The same applies to the hid string with length 13 and uid string with
length 250.
Check the length of hid and uid strings separately to prevent
buffer overflow.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |