| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| An issue was discovered in freedesktop poppler version 20.12.1, allows remote attackers to cause a denial of service (DoS) via crafted .pdf file to FoFiType1C::cvtGlyph function. |
| In NGINX Unit before version 1.34.2 with the Java Language Module in use, undisclosed requests can lead to an infinite loop and cause an increase in CPU resource utilization. This vulnerability allows a remote attacker to cause a degradation that can lead to a limited denial-of-service (DoS). There is no control plane exposure; this is a data plane issue only. Note: Software versions which have reached End of Technical Support (EoTS) are not evaluated. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: zoned: fix extent range end unlock in cow_file_range()
Running generic/751 on the for-next branch often results in a hang like
below. They are both stack by locking an extent. This suggests someone
forget to unlock an extent.
INFO: task kworker/u128:1:12 blocked for more than 323 seconds.
Not tainted 6.13.0-BTRFS-ZNS+ #503
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u128:1 state:D stack:0 pid:12 tgid:12 ppid:2 flags:0x00004000
Workqueue: btrfs-fixup btrfs_work_helper [btrfs]
Call Trace:
<TASK>
__schedule+0x534/0xdd0
schedule+0x39/0x140
__lock_extent+0x31b/0x380 [btrfs]
? __pfx_autoremove_wake_function+0x10/0x10
btrfs_writepage_fixup_worker+0xf1/0x3a0 [btrfs]
btrfs_work_helper+0xff/0x480 [btrfs]
? lock_release+0x178/0x2c0
process_one_work+0x1ee/0x570
? srso_return_thunk+0x5/0x5f
worker_thread+0x1d1/0x3b0
? __pfx_worker_thread+0x10/0x10
kthread+0x10b/0x230
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
INFO: task kworker/u134:0:184 blocked for more than 323 seconds.
Not tainted 6.13.0-BTRFS-ZNS+ #503
"echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
task:kworker/u134:0 state:D stack:0 pid:184 tgid:184 ppid:2 flags:0x00004000
Workqueue: writeback wb_workfn (flush-btrfs-4)
Call Trace:
<TASK>
__schedule+0x534/0xdd0
schedule+0x39/0x140
__lock_extent+0x31b/0x380 [btrfs]
? __pfx_autoremove_wake_function+0x10/0x10
find_lock_delalloc_range+0xdb/0x260 [btrfs]
writepage_delalloc+0x12f/0x500 [btrfs]
? srso_return_thunk+0x5/0x5f
extent_write_cache_pages+0x232/0x840 [btrfs]
btrfs_writepages+0x72/0x130 [btrfs]
do_writepages+0xe7/0x260
? srso_return_thunk+0x5/0x5f
? lock_acquire+0xd2/0x300
? srso_return_thunk+0x5/0x5f
? find_held_lock+0x2b/0x80
? wbc_attach_and_unlock_inode.part.0+0x102/0x250
? wbc_attach_and_unlock_inode.part.0+0x102/0x250
__writeback_single_inode+0x5c/0x4b0
writeback_sb_inodes+0x22d/0x550
__writeback_inodes_wb+0x4c/0xe0
wb_writeback+0x2f6/0x3f0
wb_workfn+0x32a/0x510
process_one_work+0x1ee/0x570
? srso_return_thunk+0x5/0x5f
worker_thread+0x1d1/0x3b0
? __pfx_worker_thread+0x10/0x10
kthread+0x10b/0x230
? __pfx_kthread+0x10/0x10
ret_from_fork+0x30/0x50
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
This happens because we have another success path for the zoned mode. When
there is no active zone available, btrfs_reserve_extent() returns
-EAGAIN. In this case, we have two reactions.
(1) If the given range is never allocated, we can only wait for someone
to finish a zone, so wait on BTRFS_FS_NEED_ZONE_FINISH bit and retry
afterward.
(2) Or, if some allocations are already done, we must bail out and let
the caller to send IOs for the allocation. This is because these IOs
may be necessary to finish a zone.
The commit 06f364284794 ("btrfs: do proper folio cleanup when
cow_file_range() failed") moved the unlock code from the inside of the
loop to the outside. So, previously, the allocated extents are unlocked
just after the allocation and so before returning from the function.
However, they are no longer unlocked on the case (2) above. That caused
the hang issue.
Fix the issue by modifying the 'end' to the end of the allocated
range. Then, we can exit the loop and the same unlock code can properly
handle the case. |
| The frame iterator could get stuck in a loop when encountering certain wasm frames leading to incorrect stack traces. This vulnerability affects Firefox < 128 and Thunderbird < 128. |
| A denial-of-service issue in the dns implemenation could cause an infinite loop. |
| In the Linux kernel, the following vulnerability has been resolved:
fsdax: Fix infinite loop in dax_iomap_rw()
I got an infinite loop and a WARNING report when executing a tail command
in virtiofs.
WARNING: CPU: 10 PID: 964 at fs/iomap/iter.c:34 iomap_iter+0x3a2/0x3d0
Modules linked in:
CPU: 10 PID: 964 Comm: tail Not tainted 5.19.0-rc7
Call Trace:
<TASK>
dax_iomap_rw+0xea/0x620
? __this_cpu_preempt_check+0x13/0x20
fuse_dax_read_iter+0x47/0x80
fuse_file_read_iter+0xae/0xd0
new_sync_read+0xfe/0x180
? 0xffffffff81000000
vfs_read+0x14d/0x1a0
ksys_read+0x6d/0xf0
__x64_sys_read+0x1a/0x20
do_syscall_64+0x3b/0x90
entry_SYSCALL_64_after_hwframe+0x63/0xcd
The tail command will call read() with a count of 0. In this case,
iomap_iter() will report this WARNING, and always return 1 which casuing
the infinite loop in dax_iomap_rw().
Fixing by checking count whether is 0 in dax_iomap_rw(). |
| A vulnerability in the management and VPN web servers for Cisco Adaptive Security Appliance (ASA) Software and Cisco Firepower Threat Defense (FTD) Software could allow an unauthenticated, remote attacker to cause the device to reload unexpectedly, resulting in a denial of service (DoS) condition.
This vulnerability is due to incomplete error checking when parsing an HTTP header. An attacker could exploit this vulnerability by sending a crafted HTTP request to a targeted web server on a device. A successful exploit could allow the attacker to cause a DoS condition when the device reloads. |
| This vulnerability allows any attacker to cause the PeerTube server to stop responding to requests due to an infinite loop in the "inbox" endpoint when receiving crafted ActivityPub activities. |
| MONGO dissector infinite loop in Wireshark 4.4.0 to 4.4.9 and 4.2.0 to 4.2.13 allows denial of service |
| A Denial of Service (DoS) vulnerability exists in the jaraco/zipp library, affecting all versions prior to 3.19.1. The vulnerability is triggered when processing a specially crafted zip file that leads to an infinite loop. This issue also impacts the zipfile module of CPython, as features from the third-party zipp library are later merged into CPython, and the affected code is identical in both projects. The infinite loop can be initiated through the use of functions affecting the `Path` module in both zipp and zipfile, such as `joinpath`, the overloaded division operator, and `iterdir`. Although the infinite loop is not resource exhaustive, it prevents the application from responding. The vulnerability was addressed in version 3.19.1 of jaraco/zipp. |
| A vulnerability in the LangChainLLM class of the run-llama/llama_index repository, version v0.12.5, allows for a Denial of Service (DoS) attack. The stream_complete method executes the llm using a thread and retrieves the result via the get_response_gen method of the StreamingGeneratorCallbackHandler class. If the thread terminates abnormally before the _llm.predict is executed, there is no exception handling for this case, leading to an infinite loop in the get_response_gen function. This can be triggered by providing an input of an incorrect type, causing the thread to terminate and the process to continue running indefinitely. |
| In lm-sys/fastchat Release v0.2.36, the server fails to handle excessive characters appended to the end of multipart boundaries. This flaw can be exploited by sending malformed multipart requests with arbitrary characters at the end of the boundary. Each extra character is processed in an infinite loop, leading to excessive resource consumption and a complete denial of service (DoS) for all users. The vulnerability is unauthenticated, meaning no user login or interaction is required for an attacker to exploit this issue. |
| A Denial of Service (DoS) vulnerability in the multipart request boundary processing mechanism of eosphoros-ai/db-gpt v0.6.0 allows unauthenticated attackers to cause excessive resource consumption. The server fails to handle excessive characters appended to the end of multipart boundaries, leading to an infinite loop and complete denial of service for all users. This vulnerability affects all endpoints processing multipart/form-data requests. |
| A Denial of Service (DoS) vulnerability in the multipart request boundary processing mechanism of the Invoke-AI server (version v5.0.1) allows unauthenticated attackers to cause excessive resource consumption. The server fails to handle excessive characters appended to the end of multipart boundaries, leading to an infinite loop and a complete denial of service for all users. The affected endpoint is `/api/v1/images/upload`. |
| When reading binary Ion data through Amazon.IonDotnet using the RawBinaryReader class, Amazon.IonDotnet does not check the number of bytes read from the underlying stream while deserializing the binary format. If the Ion data is malformed or truncated, this triggers an infinite loop condition that could potentially result in a denial of service. Users should upgrade to Amazon.IonDotnet version 1.3.1 and ensure any forked or derivative code is patched to incorporate the new fixes. |
| ImageMagick is free and open-source software used for editing and manipulating digital images. In versions prior to 7.1.2-0, infinite lines occur when writing during a specific XMP file conversion command. Version 7.1.2-0 fixes the issue. |
| A flaw was found in the USB Host Controller Driver framework in the Linux kernel. The usb_giveback_urb function has a logic loophole in its implementation. Due to the inappropriate judgment condition of the goto statement, the function cannot return under the input of a specific malformed descriptor file, so it falls into an endless loop, resulting in a denial of service. |
| In the Linux kernel, the following vulnerability has been resolved:
net/smc: Avoid overwriting the copies of clcsock callback functions
The callback functions of clcsock will be saved and replaced during
the fallback. But if the fallback happens more than once, then the
copies of these callback functions will be overwritten incorrectly,
resulting in a loop call issue:
clcsk->sk_error_report
|- smc_fback_error_report() <------------------------------|
|- smc_fback_forward_wakeup() | (loop)
|- clcsock_callback() (incorrectly overwritten) |
|- smc->clcsk_error_report() ------------------|
So this patch fixes the issue by saving these function pointers only
once in the fallback and avoiding overwriting. |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet: Fix crash when a namespace is disabled
The namespace percpu counter protects pending I/O, and we can
only safely diable the namespace once the counter drop to zero.
Otherwise we end up with a crash when running blktests/nvme/058
(eg for loop transport):
[ 2352.930426] [ T53909] Oops: general protection fault, probably for non-canonical address 0xdffffc0000000005: 0000 [#1] PREEMPT SMP KASAN PTI
[ 2352.930431] [ T53909] KASAN: null-ptr-deref in range [0x0000000000000028-0x000000000000002f]
[ 2352.930434] [ T53909] CPU: 3 UID: 0 PID: 53909 Comm: kworker/u16:5 Tainted: G W 6.13.0-rc6 #232
[ 2352.930438] [ T53909] Tainted: [W]=WARN
[ 2352.930440] [ T53909] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-3.fc41 04/01/2014
[ 2352.930443] [ T53909] Workqueue: nvmet-wq nvme_loop_execute_work [nvme_loop]
[ 2352.930449] [ T53909] RIP: 0010:blkcg_set_ioprio+0x44/0x180
as the queue is already torn down when calling submit_bio();
So we need to init the percpu counter in nvmet_ns_enable(), and
wait for it to drop to zero in nvmet_ns_disable() to avoid having
I/O pending after the namespace has been disabled. |
| In the Linux kernel, the following vulnerability has been resolved:
f2fs: avoid infinite loop to flush node pages
xfstests/generic/475 can give EIO all the time which give an infinite loop
to flush node page like below. Let's avoid it.
[16418.518551] Call Trace:
[16418.518553] ? dm_submit_bio+0x48/0x400
[16418.518574] ? submit_bio_checks+0x1ac/0x5a0
[16418.525207] __submit_bio+0x1a9/0x230
[16418.525210] ? kmem_cache_alloc+0x29e/0x3c0
[16418.525223] submit_bio_noacct+0xa8/0x2b0
[16418.525226] submit_bio+0x4d/0x130
[16418.525238] __submit_bio+0x49/0x310 [f2fs]
[16418.525339] ? bio_add_page+0x6a/0x90
[16418.525344] f2fs_submit_page_bio+0x134/0x1f0 [f2fs]
[16418.525365] read_node_page+0x125/0x1b0 [f2fs]
[16418.525388] __get_node_page.part.0+0x58/0x3f0 [f2fs]
[16418.525409] __get_node_page+0x2f/0x60 [f2fs]
[16418.525431] f2fs_get_dnode_of_data+0x423/0x860 [f2fs]
[16418.525452] ? asm_sysvec_apic_timer_interrupt+0x12/0x20
[16418.525458] ? __mod_memcg_state.part.0+0x2a/0x30
[16418.525465] ? __mod_memcg_lruvec_state+0x27/0x40
[16418.525467] ? __xa_set_mark+0x57/0x70
[16418.525472] f2fs_do_write_data_page+0x10e/0x7b0 [f2fs]
[16418.525493] f2fs_write_single_data_page+0x555/0x830 [f2fs]
[16418.525514] ? sysvec_apic_timer_interrupt+0x4e/0x90
[16418.525518] ? asm_sysvec_apic_timer_interrupt+0x12/0x20
[16418.525523] f2fs_write_cache_pages+0x303/0x880 [f2fs]
[16418.525545] ? blk_flush_plug_list+0x47/0x100
[16418.525548] f2fs_write_data_pages+0xfd/0x320 [f2fs]
[16418.525569] do_writepages+0xd5/0x210
[16418.525648] filemap_fdatawrite_wbc+0x7d/0xc0
[16418.525655] filemap_fdatawrite+0x50/0x70
[16418.525658] f2fs_sync_dirty_inodes+0xa4/0x230 [f2fs]
[16418.525679] f2fs_write_checkpoint+0x16d/0x1720 [f2fs]
[16418.525699] ? ttwu_do_wakeup+0x1c/0x160
[16418.525709] ? ttwu_do_activate+0x6d/0xd0
[16418.525711] ? __wait_for_common+0x11d/0x150
[16418.525715] kill_f2fs_super+0xca/0x100 [f2fs]
[16418.525733] deactivate_locked_super+0x3b/0xb0
[16418.525739] deactivate_super+0x40/0x50
[16418.525741] cleanup_mnt+0x139/0x190
[16418.525747] __cleanup_mnt+0x12/0x20
[16418.525749] task_work_run+0x6d/0xa0
[16418.525765] exit_to_user_mode_prepare+0x1ad/0x1b0
[16418.525771] syscall_exit_to_user_mode+0x27/0x50
[16418.525774] do_syscall_64+0x48/0xc0
[16418.525776] entry_SYSCALL_64_after_hwframe+0x44/0xae |