CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
The bson_strfreev function in the MongoDB C driver library may be susceptible to an integer overflow where the function will try to free memory at a negative offset. This may result in memory corruption. This issue affected libbson versions prior to 1.26.2 |
Untrusted Pointer Dereference vulnerability in RTI Connext Professional (Core Libraries) allows Pointer Manipulation.This issue affects Connext Professional: from 7.4.0 before 7.6.0, from 7.2.0 before 7.3.0.9. |
Buffer Over-read, Off-by-one Error vulnerability in RTI Connext Professional (Core Libraries) allows File Manipulation.This issue affects Connext Professional: from 7.4.0 before 7.6.0, from 7.0.0 before 7.3.0.8, from 6.1.0 before 6.1.2.26, from 6.0.0 before 6.0.*, from 5.3.0 before 5.3.*, from 4.4a before 5.2.*. |
Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') vulnerability in RTI Connext Professional (Core Libraries, Routing Service) allows Overflow Variables and Tags.This issue affects Connext Professional: from 7.0.0 before 7.3.0.5, from 6.1.0 before 6.1.2.21, from 6.0.0 before 6.0.1.40, from 5.0.0 before 5.3.1.45. |
Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') vulnerability in RTI Connext Professional (Core Libraries) allows Overflow Variables and Tags.This issue affects Connext Professional: from 7.0.0 before 7.3.0.5, from 6.1.0 before 6.1.2.21, from 6.0.0 before 6.0.1.40, from 5.0.0 before 5.3.1.45. |
Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') vulnerability in RTI Connext Professional (Core Libraries, Queuing Service, Recording Service, Routing Service) allows Overflow Variables and Tags.This issue affects Connext Professional: from 7.4.0 before 7.5.0, from 7.0.0 before 7.3.0.5, from 6.1.0 before 6.1.2.21, from 6.0.0 before 6.0.1.40, from 5.0.0 before 5.3.1.45. |
Buffer Copy without Checking Size of Input ('Classic Buffer Overflow') vulnerability in RTI Connext Professional (Routing Service, Recording Service, Queuing Service, Observability Collector Service, Cloud Discovery Service) allows Buffer Overflow via Environment Variables.This issue affects Connext Professional: from 7.0.0 before 7.3.0.5, from 6.1.0 before 6.1.2.21, from 6.0.0 before 6.0.*, from 5.3.0 before 5.3.1.45. |
Buffer Copy without Checking Size of Input ('Classic Buffer Overflow'), Heap-based Buffer Overflow, Integer Overflow or Wraparound vulnerability in RTI Connext Professional (Security Plugins) allows Overflow Variables and Tags.This issue affects Connext Professional: from 7.0.0 before 7.3.0.2, from 6.1.0 before 6.1.2.17. |
Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection') vulnerability in RTI Connext Professional (System Designer) allows OS Command Injection.This issue affects Connext Professional: from 7.0.0 before 7.3.0.2, from 6.1.0 before 6.1.2.19. |
Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection') vulnerability in RTI Connext Professional (Queuing Service) allows SQL Injection.This issue affects Connext Professional: from 7.0.0 before 7.3.0, from 6.1.0 before 6.1.2.17, from 6.0.0 before 6.0.*, from 5.2.0 before 5.3.*. |
jc21 NGINX Proxy Manager before 2.11.3 allows backend/internal/certificate.js OS command injection by an authenticated user (with certificate management privileges) via untrusted input to the DNS provider configuration. NOTE: this is not part of any NGINX software shipped by F5. |
Pi-hole is a DNS sinkhole that protects devices from unwanted content without installing any client-side software. A vulnerability in versions prior to 5.18.3 allows an authenticated user to make internal requests to the server via the `gravity_DownloadBlocklistFromUrl()` function. Depending on some circumstances, the vulnerability could lead to remote command execution. Version 5.18.3 contains a patch for this issue. |
The DI-7400G+ router has a command injection vulnerability, which allows attackers to execute arbitrary commands on the device. The sub_478D28 function in in mng_platform.asp, and sub_4A12DC function in wayos_ac_server.asp of the jhttpd program, with the parameter ac_mng_srv_host. |
AMTT Hotel Broadband Operation System (HiBOS) v3.0.3.151204 is vulnerable to SQL injection via manager/conference/calendar_remind.php. |
A vulnerability was found in OIDC-Client. When using the RH SSO OIDC adapter with EAP 7.x or when using the elytron-oidc-client subsystem with EAP 8.x, authorization code injection attacks can occur, allowing an attacker to inject a stolen authorization code into the attacker's own session with the client with a victim's identity. This is usually done with a Man-in-the-Middle (MitM) or phishing attack. |
A vulnerability in the MIT Kerberos implementation allows GSSAPI-protected messages using RC4-HMAC-MD5 to be spoofed due to weaknesses in the MD5 checksum design. If RC4 is preferred over stronger encryption types, an attacker could exploit MD5 collisions to forge message integrity codes. This may lead to unauthorized message tampering. |
RISC Zero is a zero-knowledge verifiable general computing platform, with Ethereum integration. The risc0-ethereum repository contains Solidity verifier contracts, Steel EVM view call library, and supporting code. Prior to versions 2.1.1 and 2.2.0, the `Steel.validateCommitment` Solidity library function will return `true` for a crafted commitment with a digest value of zero. This violates the semantics of `validateCommitment`, as this does not commitment to a block that is in the current chain. Because the digest is zero, it does not correspond to any block and there exist no known openings. As a result, this commitment will never be produced by a correct zkVM guest using Steel and leveraging this bug to compromise the soundness of a program using Steel would require a separate bug or misuse of the Steel library, which is expected to be used to validate the root of state opening proofs. A fix has been released as part of `risc0-ethereum` 2.1.1 and 2.2.0. Users for the `Steel` Solidity library versions 2.1.0 or earlier should ensure they are using `Steel.validateCommitment` in tandem with zkVM proof verification of a Steel program, as shown in the ERC-20 counter example, and documentation. This is the correct usage of Steel, and users following this pattern are not at risk, and do not need to take action. Users not verifying a zkVM proof of a Steel program should update their application to do so, as this is incorrect usage of Steel. |
RISC Zero is a general computing platform based on zk-STARKs and the RISC-V microarchitecture. Due to a missing constraint in the rv32im circuit, any 3-register RISC-V instruction (including remu and divu) in risc0-zkvm 2.0.0, 2.0.1, and 2.0.2 are vulnerable to an attack by a malicious prover. The main idea for the attack is to confuse the RISC-V virtual machine into treating the value of the rs1 register as the same as the rs2 register due to a lack of constraints in the rv32im circuit. Rust applications using the risc0-zkvm crate at versions 2.0.0, 2.0.1, and 2.0.2 should upgrade to version 2.1.0. Smart contract applications using the official RISC Zero Verifier Router do not need to take any action: zkVM version 2.1 is active on all official routers, and version 2.0 has been disabled. Smart contract applications not using the verifier router should update their contracts to send verification calls to the 2.1 version of the verifier. |
A stored cross-site scripting (XSS) vulnerability exists in the MyCourts v3 application within the LTA number profile field. An attacker can insert arbitrary JavaScript into their profile, which executes in the browser of any user viewing it, including administrators. Due to the absence of the HttpOnly flag on the session cookie, this flaw could be exploited to capture session tokens and hijack user sessions, enabling elevated access. |
A flaw was found in OpenShift Console. A Server Side Request Forgery (SSRF) attack can happen if an attacker supplies all or part of a URL to the server to query. The server is considered to be in a privileged network position and can often reach exposed services that aren't readily available to clients due to network filtering. Leveraging such an attack vector, the attacker can have an impact on other services and potentially disclose information or have other nefarious effects on the system.
The /api/dev-console/proxy/internet endpoint on the OpenShift Console allows authenticated users to have the console's pod perform arbitrary and fully controlled HTTP(s) requests. The full response to these requests is returned by the endpoint.
While the name of this endpoint suggests the requests are only bound to the internet, no such checks are in place. An authenticated user can therefore ask the console to perform arbitrary HTTP requests from outside the cluster to a service inside the cluster. |