| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: subpage: keep TOWRITE tag until folio is cleaned
btrfs_subpage_set_writeback() calls folio_start_writeback() the first time
a folio is written back, and it also clears the PAGECACHE_TAG_TOWRITE tag
even if there are still dirty blocks in the folio. This can break ordering
guarantees, such as those required by btrfs_wait_ordered_extents().
That ordering breakage leads to a real failure. For example, running
generic/464 on a zoned setup will hit the following ASSERT. This happens
because the broken ordering fails to flush existing dirty pages before the
file size is truncated.
assertion failed: !list_empty(&ordered->list) :: 0, in fs/btrfs/zoned.c:1899
------------[ cut here ]------------
kernel BUG at fs/btrfs/zoned.c:1899!
Oops: invalid opcode: 0000 [#1] SMP NOPTI
CPU: 2 UID: 0 PID: 1906169 Comm: kworker/u130:2 Kdump: loaded Not tainted 6.16.0-rc6-BTRFS-ZNS+ #554 PREEMPT(voluntary)
Hardware name: Supermicro Super Server/H12SSL-NT, BIOS 2.0 02/22/2021
Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
RIP: 0010:btrfs_finish_ordered_zoned.cold+0x50/0x52 [btrfs]
RSP: 0018:ffffc9002efdbd60 EFLAGS: 00010246
RAX: 000000000000004c RBX: ffff88811923c4e0 RCX: 0000000000000000
RDX: 0000000000000000 RSI: ffffffff827e38b1 RDI: 00000000ffffffff
RBP: ffff88810005d000 R08: 00000000ffffdfff R09: ffffffff831051c8
R10: ffffffff83055220 R11: 0000000000000000 R12: ffff8881c2458c00
R13: ffff88811923c540 R14: ffff88811923c5e8 R15: ffff8881c1bd9680
FS: 0000000000000000(0000) GS:ffff88a04acd0000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007f907c7a918c CR3: 0000000004024000 CR4: 0000000000350ef0
Call Trace:
<TASK>
? srso_return_thunk+0x5/0x5f
btrfs_finish_ordered_io+0x4a/0x60 [btrfs]
btrfs_work_helper+0xf9/0x490 [btrfs]
process_one_work+0x204/0x590
? srso_return_thunk+0x5/0x5f
worker_thread+0x1d6/0x3d0
? __pfx_worker_thread+0x10/0x10
kthread+0x118/0x230
? __pfx_kthread+0x10/0x10
ret_from_fork+0x205/0x260
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Consider process A calling writepages() with WB_SYNC_NONE. In zoned mode or
for compressed writes, it locks several folios for delalloc and starts
writing them out. Let's call the last locked folio folio X. Suppose the
write range only partially covers folio X, leaving some pages dirty.
Process A calls btrfs_subpage_set_writeback() when building a bio. This
function call clears the TOWRITE tag of folio X, whose size = 8K and
the block size = 4K. It is following state.
0 4K 8K
|/////|/////| (flag: DIRTY, tag: DIRTY)
<-----> Process A will write this range.
Now suppose process B concurrently calls writepages() with WB_SYNC_ALL. It
calls tag_pages_for_writeback() to tag dirty folios with
PAGECACHE_TAG_TOWRITE. Since folio X is still dirty, it gets tagged. Then,
B collects tagged folios using filemap_get_folios_tag() and must wait for
folio X to be written before returning from writepages().
0 4K 8K
|/////|/////| (flag: DIRTY, tag: DIRTY|TOWRITE)
However, between tagging and collecting, process A may call
btrfs_subpage_set_writeback() and clear folio X's TOWRITE tag.
0 4K 8K
| |/////| (flag: DIRTY|WRITEBACK, tag: DIRTY)
As a result, process B won't see folio X in its batch, and returns without
waiting for it. This breaks the WB_SYNC_ALL ordering requirement.
Fix this by using btrfs_subpage_set_writeback_keepwrite(), which retains
the TOWRITE tag. We now manually clear the tag only after the folio becomes
clean, via the xas operation. |
| phpPgAdmin 7.13.0 and earlier contains an incorrect access control vulnerability in sql.php at lines 68-76. The application allows unauthorized manipulation of session variables by accepting user-controlled parameters ('subject', 'server', 'database', 'queryid') without proper validation or access control checks. Attackers can exploit this to store arbitrary SQL queries in $_SESSION['sqlquery'] by manipulating these parameters, potentially leading to session poisoning, stored cross-site scripting, or unauthorized access to sensitive session data. |
| In the Linux kernel, the following vulnerability has been resolved:
sched/ext: Fix invalid task state transitions on class switch
When enabling a sched_ext scheduler, we may trigger invalid task state
transitions, resulting in warnings like the following (which can be
easily reproduced by running the hotplug selftest in a loop):
sched_ext: Invalid task state transition 0 -> 3 for fish[770]
WARNING: CPU: 18 PID: 787 at kernel/sched/ext.c:3862 scx_set_task_state+0x7c/0xc0
...
RIP: 0010:scx_set_task_state+0x7c/0xc0
...
Call Trace:
<TASK>
scx_enable_task+0x11f/0x2e0
switching_to_scx+0x24/0x110
scx_enable.isra.0+0xd14/0x13d0
bpf_struct_ops_link_create+0x136/0x1a0
__sys_bpf+0x1edd/0x2c30
__x64_sys_bpf+0x21/0x30
do_syscall_64+0xbb/0x370
entry_SYSCALL_64_after_hwframe+0x77/0x7f
This happens because we skip initialization for tasks that are already
dead (with their usage counter set to zero), but we don't exclude them
during the scheduling class transition phase.
Fix this by also skipping dead tasks during class swiching, preventing
invalid task state transitions. |
| ClipBucket v5 is an open source video sharing platform. In ClipBucket version 5.5.2, a change to network.class.php causes the application to dynamically build the server URL from the incoming HTTP Host header when the configuration base_url is not set. Because Host is a client-controlled header, an attacker can supply an arbitrary Host value. This allows an attacker to cause password-reset links (sent by forget.php) to be generated with the attacker’s domain. If a victim follows that link and enters their activation code on the attacker-controlled domain, the attacker can capture the code and use it to reset the victim’s password and take over the account. This issue has been patched in version 5.5.2#162. |
| Authorization bypass in Revive Adserver 5.5.2 and 6.0.1 and earlier versions causes an logged in attacker to change other users' email address and potentialy take over their accounts using the forgot password functionality. |
| Improper Neutralization of Input in Revive Adserver 5.5.2 and 6.0.1 and earlier versions causes a potential reflected XSS attack. |
| In the Linux kernel, the following vulnerability has been resolved:
parisc: Drop WARN_ON_ONCE() from flush_cache_vmap
I have observed warning to occassionally trigger. |
| In the Linux kernel, the following vulnerability has been resolved:
PCI: Fix link speed calculation on retrain failure
When pcie_failed_link_retrain() fails to retrain, it tries to revert to the
previous link speed. However it calculates that speed from the Link
Control 2 register without masking out non-speed bits first.
PCIE_LNKCTL2_TLS2SPEED() converts such incorrect values to
PCI_SPEED_UNKNOWN (0xff), which in turn causes a WARN splat in
pcie_set_target_speed():
pci 0000:00:01.1: [1022:14ed] type 01 class 0x060400 PCIe Root Port
pci 0000:00:01.1: broken device, retraining non-functional downstream link at 2.5GT/s
pci 0000:00:01.1: retraining failed
WARNING: CPU: 1 PID: 1 at drivers/pci/pcie/bwctrl.c:168 pcie_set_target_speed
RDX: 0000000000000001 RSI: 00000000000000ff RDI: ffff9acd82efa000
pcie_failed_link_retrain
pci_device_add
pci_scan_single_device
Mask out the non-speed bits in PCIE_LNKCTL2_TLS2SPEED() and
PCIE_LNKCAP_SLS2SPEED() so they don't incorrectly return PCI_SPEED_UNKNOWN.
[bhelgaas: commit log, add details from https://lore.kernel.org/r/1c92ef6bcb314ee6977839b46b393282e4f52e74.1750684771.git.lukas@wunner.de] |
| In the Linux kernel, the following vulnerability has been resolved:
drm/hisilicon/hibmc: fix irq_request()'s irq name variable is local
The local variable is passed in request_irq (), and there will be use
after free problem, which will make request_irq failed. Using the global
irq name instead of it to fix. |
| Missing Authorization vulnerability in Themekraft BuddyForms buddyforms allows Accessing Functionality Not Properly Constrained by ACLs.This issue affects BuddyForms: from n/a through <= 2.9.0. |
| LinkAce is a self-hosted archive to collect website links. In versions 2.3.1 and below, the social media sharing functionality contains a Stored Cross-Site Scripting (XSS) vulnerability that allows any authenticated user to inject arbitrary JavaScript by creating a link with malicious HTML in the title field. When a user views the link details page and the shareable links are rendered, the malicious JavaScript executes in their browser. This vulnerability affects multiple sharing services and can be exploited to steal session cookies, perform actions on behalf of users, or deliver malware. This issue is fixed in version 2.4.0. |
| In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ad7173: fix channels index for syscalib_mode
Fix the index used to look up the channel when accessing the
syscalib_mode attribute. The address field is a 0-based index (same
as scan_index) that it used to access the channel in the
ad7173_channels array throughout the driver. The channels field, on
the other hand, may not match the address field depending on the
channel configuration specified in the device tree and could result
in an out-of-bounds access. |
| Strapi is an open source headless content management system. Strapi versions prior to 5.20.0 contain a CORS misconfiguration vulnerability in default installations. By default, Strapi reflects the value of the Origin header back in the Access-Control-Allow-Origin response header without proper validation or whitelisting. This allows an attacker-controlled site to send credentialed requests to the Strapi backend. An attacker can exploit this by hosting a malicious site on a different origin (e.g., different port) and sending requests with credentials to the Strapi API. The vulnerability is fixed in version 5.20.0. No known workarounds exist. |
| Piwigo is a full featured open source photo gallery application for the web. In Piwigo 15.6.0, using the password reset function allows sending a password-reset URL by entering an existing username or email address. However, the hostname used to construct this URL is taken from the HTTP request's Host header and is not validated at all. Therefore, an attacker can send a password-reset URL with a modified hostname to an existing user whose username or email the attacker knows or guesses. This issue has been patched in version 15.7.0. |
| In the Linux kernel, the following vulnerability has been resolved:
crypto: x86/aegis - Add missing error checks
The skcipher_walk functions can allocate memory and can fail, so
checking for errors is necessary. |
| In the Linux kernel, the following vulnerability has been resolved:
dm: dm-crypt: Do not partially accept write BIOs with zoned targets
Read and write operations issued to a dm-crypt target may be split
according to the dm-crypt internal limits defined by the max_read_size
and max_write_size module parameters (default is 128 KB). The intent is
to improve processing time of large BIOs by splitting them into smaller
operations that can be parallelized on different CPUs.
For zoned dm-crypt targets, this BIO splitting is still done but without
the parallel execution to ensure that the issuing order of write
operations to the underlying devices remains sequential. However, the
splitting itself causes other problems:
1) Since dm-crypt relies on the block layer zone write plugging to
handle zone append emulation using regular write operations, the
reminder of a split write BIO will always be plugged into the target
zone write plugged. Once the on-going write BIO finishes, this
reminder BIO is unplugged and issued from the zone write plug work.
If this reminder BIO itself needs to be split, the reminder will be
re-issued and plugged again, but that causes a call to a
blk_queue_enter(), which may block if a queue freeze operation was
initiated. This results in a deadlock as DM submission still holds
BIOs that the queue freeze side is waiting for.
2) dm-crypt relies on the emulation done by the block layer using
regular write operations for processing zone append operations. This
still requires to properly return the written sector as the BIO
sector of the original BIO. However, this can be done correctly only
and only if there is a single clone BIO used for processing the
original zone append operation issued by the user. If the size of a
zone append operation is larger than dm-crypt max_write_size, then
the orginal BIO will be split and processed as a chain of regular
write operations. Such chaining result in an incorrect written sector
being returned to the zone append issuer using the original BIO
sector. This in turn results in file system data corruptions using
xfs or btrfs.
Fix this by modifying get_max_request_size() to always return the size
of the BIO to avoid it being split with dm_accpet_partial_bio() in
crypt_map(). get_max_request_size() is renamed to
get_max_request_sectors() to clarify the unit of the value returned
and its interface is changed to take a struct dm_target pointer and a
pointer to the struct bio being processed. In addition to this change,
to ensure that crypt_alloc_buffer() works correctly, set the dm-crypt
device max_hw_sectors limit to be at most
BIO_MAX_VECS << PAGE_SECTORS_SHIFT (1 MB with a 4KB page architecture).
This forces DM core to split write BIOs before passing them to
crypt_map(), and thus guaranteeing that dm-crypt can always accept an
entire write BIO without needing to split it.
This change does not have any effect on the read path of dm-crypt. Read
operations can still be split and the BIO fragments processed in
parallel. There is also no impact on the performance of the write path
given that all zone write BIOs were already processed inline instead of
in parallel.
This change also does not affect in any way regular dm-crypt block
devices. |
| In the Linux kernel, the following vulnerability has been resolved:
dm: Always split write BIOs to zoned device limits
Any zoned DM target that requires zone append emulation will use the
block layer zone write plugging. In such case, DM target drivers must
not split BIOs using dm_accept_partial_bio() as doing so can potentially
lead to deadlocks with queue freeze operations. Regular write operations
used to emulate zone append operations also cannot be split by the
target driver as that would result in an invalid writen sector value
return using the BIO sector.
In order for zoned DM target drivers to avoid such incorrect BIO
splitting, we must ensure that large BIOs are split before being passed
to the map() function of the target, thus guaranteeing that the
limits for the mapped device are not exceeded.
dm-crypt and dm-flakey are the only target drivers supporting zoned
devices and using dm_accept_partial_bio().
In the case of dm-crypt, this function is used to split BIOs to the
internal max_write_size limit (which will be suppressed in a different
patch). However, since crypt_alloc_buffer() uses a bioset allowing only
up to BIO_MAX_VECS (256) vectors in a BIO. The dm-crypt device
max_segments limit, which is not set and so default to BLK_MAX_SEGMENTS
(128), must thus be respected and write BIOs split accordingly.
In the case of dm-flakey, since zone append emulation is not required,
the block layer zone write plugging is not used and no splitting of BIOs
required.
Modify the function dm_zone_bio_needs_split() to use the block layer
helper function bio_needs_zone_write_plugging() to force a call to
bio_split_to_limits() in dm_split_and_process_bio(). This allows DM
target drivers to avoid using dm_accept_partial_bio() for write
operations on zoned DM devices. |
| Improper access control in secure message component in Devolutions Server allows an authenticated user to steal unauthorized entries via the secure message entry attachment feature
This issue affects the following versions :
* Devolutions Server 2025.2.2.0 through 2025.2.4.0
*
Devolutions Server 2025.1.11.0 and earlier |
| Use of weak credentials in emergency authentication component in Devolutions Server allows an unauthenticated attacker to bypass authentication via brute forcing the short emergency codes generated by the server within a feasible timeframe.
This issue affects the following versions :
* Devolutions Server 2025.2.2.0 through 2025.2.3.0
*
Devolutions Server 2025.1.11.0 and earlier |
| python-jose thru 3.3.0 allows JWT tokens with 'alg=none' to be decoded and accepted without any cryptographic signature verification. A malicious actor can craft a forged token with arbitrary claims (e.g., is_admin=true) and bypass authentication checks, leading to privilege escalation or unauthorized access in applications that rely on python-jose for token validation. This issue is exploitable unless developers explicitly reject 'alg=none' tokens, which is not enforced by the library. NOTE: all parties agree that the issue is not relevant because it only occurs in a "verify_signature": False situation. |