CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
A buffer overflow issue was addressed with improved memory handling. This issue is fixed in macOS Ventura 13.3. An app may be able to cause unexpected system termination or write kernel memory. |
A buffer overflow issue was addressed with improved memory handling. This issue is fixed in macOS Ventura 13.3. An app may be able to cause unexpected system termination or write kernel memory. |
A buffer overrun can be triggered in X.509 certificate verification, specifically in name constraint checking. Note that this occurs after certificate chain signature verification and requires either a CA to have signed a malicious certificate or for an application to continue certificate verification despite failure to construct a path to a trusted issuer. An attacker can craft a malicious email address in a certificate to overflow an arbitrary number of bytes containing the `.' character (decimal 46) on the stack. This buffer overflow could result in a crash (causing a denial of service). In a TLS client, this can be triggered by connecting to a malicious server. In a TLS server, this can be triggered if the server requests client authentication and a malicious client connects.
|
In drivers/char/virtio_console.c in the Linux kernel before 5.13.4, data corruption or loss can be triggered by an untrusted device that supplies a buf->len value exceeding the buffer size. NOTE: the vendor indicates that the cited data corruption is not a vulnerability in any existing use case; the length validation was added solely for robustness in the face of anomalous host OS behavior |
Buffer Overflow vulnerability in LibRaw::stretch() function in libraw\src\postprocessing\aspect_ratio.cpp. |
An issue was discovered in drivers/net/ethernet/intel/igb/igb_main.c in the IGB driver in the Linux kernel before 6.5.3. A buffer size may not be adequate for frames larger than the MTU. |
Buffer Overflow vulnerability in FreeImage_Load function in FreeImage Library 3.19.0(r1828) allows attackers to cuase a denial of service via crafted PFM file. |
Buffer Overflow vulnerability in function LoadPixelDataRLE8 in PluginBMP.cpp in FreeImage 3.18.0 allows remote attackers to run arbitrary code and cause other impacts via crafted image file. |
In the Linux kernel, the following vulnerability has been resolved:
iio: adc: ad7923: Fix buffer overflow for tx_buf and ring_xfer
The AD7923 was updated to support devices with 8 channels, but the size
of tx_buf and ring_xfer was not increased accordingly, leading to a
potential buffer overflow in ad7923_update_scan_mode(). |
In the Linux kernel, the following vulnerability has been resolved:
clk: clk-loongson2: Fix potential buffer overflow in flexible-array member access
Flexible-array member `hws` in `struct clk_hw_onecell_data` is annotated
with the `counted_by()` attribute. This means that when memory is
allocated for this array, the _counter_, which in this case is member
`num` in the flexible structure, should be set to the maximum number of
elements the flexible array can contain, or fewer.
In this case, the total number of elements for the flexible array is
determined by variable `clks_num` when allocating heap space via
`devm_kzalloc()`, as shown below:
289 struct loongson2_clk_provider *clp;
...
296 for (p = data; p->name; p++)
297 clks_num++;
298
299 clp = devm_kzalloc(dev, struct_size(clp, clk_data.hws, clks_num),
300 GFP_KERNEL);
So, `clp->clk_data.num` should be set to `clks_num` or less, and not
exceed `clks_num`, as is currently the case. Otherwise, if data is
written into `clp->clk_data.hws[clks_num]`, the instrumentation
provided by the compiler won't detect the overflow, leading to a
memory corruption bug at runtime.
Fix this issue by setting `clp->clk_data.num` to `clks_num`. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: add missing size check in amdgpu_debugfs_gprwave_read()
Avoid a possible buffer overflow if size is larger than 4K.
(cherry picked from commit f5d873f5825b40d886d03bd2aede91d4cf002434) |
In the Linux kernel, the following vulnerability has been resolved:
tracing: Consider the NULL character when validating the event length
strlen() returns a string length excluding the null byte. If the string
length equals to the maximum buffer length, the buffer will have no
space for the NULL terminating character.
This commit checks this condition and returns failure for it. |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe/oa: Fix overflow in oa batch buffer
By default xe_bb_create_job() appends a MI_BATCH_BUFFER_END to batch
buffer, this is not a problem if batch buffer is only used once but
oa reuses the batch buffer for the same metric and at each call
it appends a MI_BATCH_BUFFER_END, printing the warning below and then
overflowing.
[ 381.072016] ------------[ cut here ]------------
[ 381.072019] xe 0000:00:02.0: [drm] Assertion `bb->len * 4 + bb_prefetch(q->gt) <= size` failed!
platform: LUNARLAKE subplatform: 1
graphics: Xe2_LPG / Xe2_HPG 20.04 step B0
media: Xe2_LPM / Xe2_HPM 20.00 step B0
tile: 0 VRAM 0 B
GT: 0 type 1
So here checking if batch buffer already have MI_BATCH_BUFFER_END if
not append it.
v2:
- simply fix, suggestion from Ashutosh
(cherry picked from commit 9ba0e0f30ca42a98af3689460063edfb6315718a) |
In the Linux kernel, the following vulnerability has been resolved:
cifs: Fix buffer overflow when parsing NFS reparse points
ReparseDataLength is sum of the InodeType size and DataBuffer size.
So to get DataBuffer size it is needed to subtract InodeType's size from
ReparseDataLength.
Function cifs_strndup_from_utf16() is currentlly accessing buf->DataBuffer
at position after the end of the buffer because it does not subtract
InodeType size from the length. Fix this problem and correctly subtract
variable len.
Member InodeType is present only when reparse buffer is large enough. Check
for ReparseDataLength before accessing InodeType to prevent another invalid
memory access.
Major and minor rdev values are present also only when reparse buffer is
large enough. Check for reparse buffer size before calling reparse_mkdev(). |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: send: fix buffer overflow detection when copying path to cache entry
Starting with commit c0247d289e73 ("btrfs: send: annotate struct
name_cache_entry with __counted_by()") we annotated the variable length
array "name" from the name_cache_entry structure with __counted_by() to
improve overflow detection. However that alone was not correct, because
the length of that array does not match the "name_len" field - it matches
that plus 1 to include the NUL string terminator, so that makes a
fortified kernel think there's an overflow and report a splat like this:
strcpy: detected buffer overflow: 20 byte write of buffer size 19
WARNING: CPU: 3 PID: 3310 at __fortify_report+0x45/0x50
CPU: 3 UID: 0 PID: 3310 Comm: btrfs Not tainted 6.11.0-prnet #1
Hardware name: CompuLab Ltd. sbc-ihsw/Intense-PC2 (IPC2), BIOS IPC2_3.330.7 X64 03/15/2018
RIP: 0010:__fortify_report+0x45/0x50
Code: 48 8b 34 (...)
RSP: 0018:ffff97ebc0d6f650 EFLAGS: 00010246
RAX: 7749924ef60fa600 RBX: ffff8bf5446a521a RCX: 0000000000000027
RDX: 00000000ffffdfff RSI: ffff97ebc0d6f548 RDI: ffff8bf84e7a1cc8
RBP: ffff8bf548574080 R08: ffffffffa8c40e10 R09: 0000000000005ffd
R10: 0000000000000004 R11: ffffffffa8c70e10 R12: ffff8bf551eef400
R13: 0000000000000000 R14: 0000000000000013 R15: 00000000000003a8
FS: 00007fae144de8c0(0000) GS:ffff8bf84e780000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fae14691690 CR3: 00000001027a2003 CR4: 00000000001706f0
Call Trace:
<TASK>
? __warn+0x12a/0x1d0
? __fortify_report+0x45/0x50
? report_bug+0x154/0x1c0
? handle_bug+0x42/0x70
? exc_invalid_op+0x1a/0x50
? asm_exc_invalid_op+0x1a/0x20
? __fortify_report+0x45/0x50
__fortify_panic+0x9/0x10
__get_cur_name_and_parent+0x3bc/0x3c0
get_cur_path+0x207/0x3b0
send_extent_data+0x709/0x10d0
? find_parent_nodes+0x22df/0x25d0
? mas_nomem+0x13/0x90
? mtree_insert_range+0xa5/0x110
? btrfs_lru_cache_store+0x5f/0x1e0
? iterate_extent_inodes+0x52d/0x5a0
process_extent+0xa96/0x11a0
? __pfx_lookup_backref_cache+0x10/0x10
? __pfx_store_backref_cache+0x10/0x10
? __pfx_iterate_backrefs+0x10/0x10
? __pfx_check_extent_item+0x10/0x10
changed_cb+0x6fa/0x930
? tree_advance+0x362/0x390
? memcmp_extent_buffer+0xd7/0x160
send_subvol+0xf0a/0x1520
btrfs_ioctl_send+0x106b/0x11d0
? __pfx___clone_root_cmp_sort+0x10/0x10
_btrfs_ioctl_send+0x1ac/0x240
btrfs_ioctl+0x75b/0x850
__se_sys_ioctl+0xca/0x150
do_syscall_64+0x85/0x160
? __count_memcg_events+0x69/0x100
? handle_mm_fault+0x1327/0x15c0
? __se_sys_rt_sigprocmask+0xf1/0x180
? syscall_exit_to_user_mode+0x75/0xa0
? do_syscall_64+0x91/0x160
? do_user_addr_fault+0x21d/0x630
entry_SYSCALL_64_after_hwframe+0x76/0x7e
RIP: 0033:0x7fae145eeb4f
Code: 00 48 89 (...)
RSP: 002b:00007ffdf1cb09b0 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007fae145eeb4f
RDX: 00007ffdf1cb0ad0 RSI: 0000000040489426 RDI: 0000000000000004
RBP: 00000000000078fe R08: 00007fae144006c0 R09: 00007ffdf1cb0927
R10: 0000000000000008 R11: 0000000000000246 R12: 00007ffdf1cb1ce8
R13: 0000000000000003 R14: 000055c499fab2e0 R15: 0000000000000004
</TASK>
Fix this by not storing the NUL string terminator since we don't actually
need it for name cache entries, this way "name_len" corresponds to the
actual size of the "name" array. This requires marking the "name" array
field with __nonstring and using memcpy() instead of strcpy() as
recommended by the guidelines at:
https://github.com/KSPP/linux/issues/90 |
In the Linux kernel, the following vulnerability has been resolved:
PCI: kirin: Fix buffer overflow in kirin_pcie_parse_port()
Within kirin_pcie_parse_port(), the pcie->num_slots is compared to
pcie->gpio_id_reset size (MAX_PCI_SLOTS) which is correct and would lead
to an overflow.
Thus, fix condition to pcie->num_slots + 1 >= MAX_PCI_SLOTS and move
pcie->num_slots increment below the if-statement to avoid out-of-bounds
array access.
Found by Linux Verification Center (linuxtesting.org) with SVACE.
[kwilczynski: commit log] |
In the Linux kernel, the following vulnerability has been resolved:
udf: Avoid excessive partition lengths
Avoid mounting filesystems where the partition would overflow the
32-bits used for block number. Also refuse to mount filesystems where
the partition length is so large we cannot safely index bits in a
block bitmap. |
In the Linux kernel, the following vulnerability has been resolved:
bna: adjust 'name' buf size of bna_tcb and bna_ccb structures
To have enough space to write all possible sprintf() args. Currently
'name' size is 16, but the first '%s' specifier may already need at
least 16 characters, since 'bnad->netdev->name' is used there.
For '%d' specifiers, assume that they require:
* 1 char for 'tx_id + tx_info->tcb[i]->id' sum, BNAD_MAX_TXQ_PER_TX is 8
* 2 chars for 'rx_id + rx_info->rx_ctrl[i].ccb->id', BNAD_MAX_RXP_PER_RX
is 16
And replace sprintf with snprintf.
Detected using the static analysis tool - Svace. |
In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Return error if block header overflows file
Return an error from cs_dsp_power_up() if a block header is longer
than the amount of data left in the file.
The previous code in cs_dsp_load() and cs_dsp_load_coeff() would loop
while there was enough data left in the file for a valid region. This
protected against overrunning the end of the file data, but it didn't
abort the file processing with an error. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Take return from set_memory_ro() into account with bpf_prog_lock_ro()
set_memory_ro() can fail, leaving memory unprotected.
Check its return and take it into account as an error. |