CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe: Fix potential integer overflow in page size calculation
Explicitly cast tbo->page_alignment to u64 before bit-shifting to
prevent overflow when assigning to min_page_size. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Mark bpf prog stack with kmsan_unposion_memory in interpreter mode
syzbot reported uninit memory usages during map_{lookup,delete}_elem.
==========
BUG: KMSAN: uninit-value in __dev_map_lookup_elem kernel/bpf/devmap.c:441 [inline]
BUG: KMSAN: uninit-value in dev_map_lookup_elem+0xf3/0x170 kernel/bpf/devmap.c:796
__dev_map_lookup_elem kernel/bpf/devmap.c:441 [inline]
dev_map_lookup_elem+0xf3/0x170 kernel/bpf/devmap.c:796
____bpf_map_lookup_elem kernel/bpf/helpers.c:42 [inline]
bpf_map_lookup_elem+0x5c/0x80 kernel/bpf/helpers.c:38
___bpf_prog_run+0x13fe/0xe0f0 kernel/bpf/core.c:1997
__bpf_prog_run256+0xb5/0xe0 kernel/bpf/core.c:2237
==========
The reproducer should be in the interpreter mode.
The C reproducer is trying to run the following bpf prog:
0: (18) r0 = 0x0
2: (18) r1 = map[id:49]
4: (b7) r8 = 16777216
5: (7b) *(u64 *)(r10 -8) = r8
6: (bf) r2 = r10
7: (07) r2 += -229
^^^^^^^^^^
8: (b7) r3 = 8
9: (b7) r4 = 0
10: (85) call dev_map_lookup_elem#1543472
11: (95) exit
It is due to the "void *key" (r2) passed to the helper. bpf allows uninit
stack memory access for bpf prog with the right privileges. This patch
uses kmsan_unpoison_memory() to mark the stack as initialized.
This should address different syzbot reports on the uninit "void *key"
argument during map_{lookup,delete}_elem. |
In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Fix overflow checking of wmfw header
Fix the checking that firmware file buffer is large enough for the
wmfw header, to prevent overrunning the buffer.
The original code tested that the firmware data buffer contained
enough bytes for the sums of the size of the structs
wmfw_header + wmfw_adsp1_sizes + wmfw_footer
But wmfw_adsp1_sizes is only used on ADSP1 firmware. For ADSP2 and
Halo Core the equivalent struct is wmfw_adsp2_sizes, which is
4 bytes longer. So the length check didn't guarantee that there
are enough bytes in the firmware buffer for a header with
wmfw_adsp2_sizes.
This patch splits the length check into three separate parts. Each
of the wmfw_header, wmfw_adsp?_sizes and wmfw_footer are checked
separately before they are used. |
In the Linux kernel, the following vulnerability has been resolved:
firmware: cs_dsp: Prevent buffer overrun when processing V2 alg headers
Check that all fields of a V2 algorithm header fit into the available
firmware data buffer.
The wmfw V2 format introduced variable-length strings in the algorithm
block header. This means the overall header length is variable, and the
position of most fields varies depending on the length of the string
fields. Each field must be checked to ensure that it does not overflow
the firmware data buffer.
As this ia bugfix patch, the fixes avoid making any significant change to
the existing code. This makes it easier to review and less likely to
introduce new bugs. |
In the Linux kernel, the following vulnerability has been resolved:
jfs: xattr: fix buffer overflow for invalid xattr
When an xattr size is not what is expected, it is printed out to the
kernel log in hex format as a form of debugging. But when that xattr
size is bigger than the expected size, printing it out can cause an
access off the end of the buffer.
Fix this all up by properly restricting the size of the debug hex dump
in the kernel log. |
In the Linux kernel, the following vulnerability has been resolved:
kdb: Fix buffer overflow during tab-complete
Currently, when the user attempts symbol completion with the Tab key, kdb
will use strncpy() to insert the completed symbol into the command buffer.
Unfortunately it passes the size of the source buffer rather than the
destination to strncpy() with predictably horrible results. Most obviously
if the command buffer is already full but cp, the cursor position, is in
the middle of the buffer, then we will write past the end of the supplied
buffer.
Fix this by replacing the dubious strncpy() calls with memmove()/memcpy()
calls plus explicit boundary checks to make sure we have enough space
before we start moving characters around. |
In the Linux kernel, the following vulnerability has been resolved:
rcu: Fix buffer overflow in print_cpu_stall_info()
The rcuc-starvation output from print_cpu_stall_info() might overflow the
buffer if there is a huge difference in jiffies difference. The situation
might seem improbable, but computers sometimes get very confused about
time, which can result in full-sized integers, and, in this case,
buffer overflow.
Also, the unsigned jiffies difference is printed using %ld, which is
normally for signed integers. This is intentional for debugging purposes,
but it is not obvious from the code.
This commit therefore changes sprintf() to snprintf() and adds a
clarifying comment about intention of %ld format.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
In the Linux kernel, the following vulnerability has been resolved:
vt: fix unicode buffer corruption when deleting characters
This is the same issue that was fixed for the VGA text buffer in commit
39cdb68c64d8 ("vt: fix memory overlapping when deleting chars in the
buffer"). The cure is also the same i.e. replace memcpy() with memmove()
due to the overlaping buffers. |
In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fixed overflow check in mi_enum_attr() |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Fix a potential buffer overflow in 'dp_dsc_clock_en_read()'
Tell snprintf() to store at most 10 bytes in the output buffer
instead of 30.
Fixes the below:
drivers/gpu/drm/amd/amdgpu/../display/amdgpu_dm/amdgpu_dm_debugfs.c:1508 dp_dsc_clock_en_read() error: snprintf() is printing too much 30 vs 10 |
In the Linux kernel, the following vulnerability has been resolved:
ASoC: SOF: Add some bounds checking to firmware data
Smatch complains about "head->full_size - head->header_size" can
underflow. To some extent, we're always going to have to trust the
firmware a bit. However, it's easy enough to add a check for negatives,
and let's add a upper bounds check as well. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: Reset IH OVERFLOW_CLEAR bit
Allows us to detect subsequent IH ring buffer overflows as well. |
In the Linux kernel, the following vulnerability has been resolved:
tools/rtla: Fix clang warning about mount_point var size
clang is reporting this warning:
$ make HOSTCC=clang CC=clang LLVM_IAS=1
[...]
clang -O -g -DVERSION=\"6.8.0-rc3\" -flto=auto -fexceptions
-fstack-protector-strong -fasynchronous-unwind-tables
-fstack-clash-protection -Wall -Werror=format-security
-Wp,-D_FORTIFY_SOURCE=2 -Wp,-D_GLIBCXX_ASSERTIONS
$(pkg-config --cflags libtracefs) -c -o src/utils.o src/utils.c
src/utils.c:548:66: warning: 'fscanf' may overflow; destination buffer in argument 3 has size 1024, but the corresponding specifier may require size 1025 [-Wfortify-source]
548 | while (fscanf(fp, "%*s %" STR(MAX_PATH) "s %99s %*s %*d %*d\n", mount_point, type) == 2) {
| ^
Increase mount_point variable size to MAX_PATH+1 to avoid the overflow. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Prevent potential buffer overflow in map_hw_resources
Adds a check in the map_hw_resources function to prevent a potential
buffer overflow. The function was accessing arrays using an index that
could potentially be greater than the size of the arrays, leading to a
buffer overflow.
Adds a check to ensure that the index is within the bounds of the
arrays. If the index is out of bounds, an error message is printed and
break it will continue execution with just ignoring extra data early to
prevent the buffer overflow.
Reported by smatch:
drivers/gpu/drm/amd/amdgpu/../display/dc/dml2/dml2_wrapper.c:79 map_hw_resources() error: buffer overflow 'dml2->v20.scratch.dml_to_dc_pipe_mapping.disp_cfg_to_stream_id' 6 <= 7
drivers/gpu/drm/amd/amdgpu/../display/dc/dml2/dml2_wrapper.c:81 map_hw_resources() error: buffer overflow 'dml2->v20.scratch.dml_to_dc_pipe_mapping.disp_cfg_to_plane_id' 6 <= 7 |
In the Linux kernel, the following vulnerability has been resolved:
iommufd: Fix protection fault in iommufd_test_syz_conv_iova
Syzkaller reported the following bug:
general protection fault, probably for non-canonical address 0xdffffc0000000038: 0000 [#1] SMP KASAN
KASAN: null-ptr-deref in range [0x00000000000001c0-0x00000000000001c7]
Call Trace:
lock_acquire
lock_acquire+0x1ce/0x4f0
down_read+0x93/0x4a0
iommufd_test_syz_conv_iova+0x56/0x1f0
iommufd_test_access_rw.isra.0+0x2ec/0x390
iommufd_test+0x1058/0x1e30
iommufd_fops_ioctl+0x381/0x510
vfs_ioctl
__do_sys_ioctl
__se_sys_ioctl
__x64_sys_ioctl+0x170/0x1e0
do_syscall_x64
do_syscall_64+0x71/0x140
This is because the new iommufd_access_change_ioas() sets access->ioas to
NULL during its process, so the lock might be gone in a concurrent racing
context.
Fix this by doing the same access->ioas sanity as iommufd_access_rw() and
iommufd_access_pin_pages() functions do. |
In the Linux kernel, the following vulnerability has been resolved:
LoongArch: Change acpi_core_pic[NR_CPUS] to acpi_core_pic[MAX_CORE_PIC]
With default config, the value of NR_CPUS is 64. When HW platform has
more then 64 cpus, system will crash on these platforms. MAX_CORE_PIC
is the maximum cpu number in MADT table (max physical number) which can
exceed the supported maximum cpu number (NR_CPUS, max logical number),
but kernel should not crash. Kernel should boot cpus with NR_CPUS, let
the remainder cpus stay in BIOS.
The potential crash reason is that the array acpi_core_pic[NR_CPUS] can
be overflowed when parsing MADT table, and it is obvious that CORE_PIC
should be corresponding to physical core rather than logical core, so it
is better to define the array as acpi_core_pic[MAX_CORE_PIC].
With the patch, system can boot up 64 vcpus with qemu parameter -smp 128,
otherwise system will crash with the following message.
[ 0.000000] CPU 0 Unable to handle kernel paging request at virtual address 0000420000004259, era == 90000000037a5f0c, ra == 90000000037a46ec
[ 0.000000] Oops[#1]:
[ 0.000000] CPU: 0 PID: 0 Comm: swapper Not tainted 6.8.0-rc2+ #192
[ 0.000000] Hardware name: QEMU QEMU Virtual Machine, BIOS unknown 2/2/2022
[ 0.000000] pc 90000000037a5f0c ra 90000000037a46ec tp 9000000003c90000 sp 9000000003c93d60
[ 0.000000] a0 0000000000000019 a1 9000000003d93bc0 a2 0000000000000000 a3 9000000003c93bd8
[ 0.000000] a4 9000000003c93a74 a5 9000000083c93a67 a6 9000000003c938f0 a7 0000000000000005
[ 0.000000] t0 0000420000004201 t1 0000000000000000 t2 0000000000000001 t3 0000000000000001
[ 0.000000] t4 0000000000000003 t5 0000000000000000 t6 0000000000000030 t7 0000000000000063
[ 0.000000] t8 0000000000000014 u0 ffffffffffffffff s9 0000000000000000 s0 9000000003caee98
[ 0.000000] s1 90000000041b0480 s2 9000000003c93da0 s3 9000000003c93d98 s4 9000000003c93d90
[ 0.000000] s5 9000000003caa000 s6 000000000a7fd000 s7 000000000f556b60 s8 000000000e0a4330
[ 0.000000] ra: 90000000037a46ec platform_init+0x214/0x250
[ 0.000000] ERA: 90000000037a5f0c efi_runtime_init+0x30/0x94
[ 0.000000] CRMD: 000000b0 (PLV0 -IE -DA +PG DACF=CC DACM=CC -WE)
[ 0.000000] PRMD: 00000000 (PPLV0 -PIE -PWE)
[ 0.000000] EUEN: 00000000 (-FPE -SXE -ASXE -BTE)
[ 0.000000] ECFG: 00070800 (LIE=11 VS=7)
[ 0.000000] ESTAT: 00010000 [PIL] (IS= ECode=1 EsubCode=0)
[ 0.000000] BADV: 0000420000004259
[ 0.000000] PRID: 0014c010 (Loongson-64bit, Loongson-3A5000)
[ 0.000000] Modules linked in:
[ 0.000000] Process swapper (pid: 0, threadinfo=(____ptrval____), task=(____ptrval____))
[ 0.000000] Stack : 9000000003c93a14 9000000003800898 90000000041844f8 90000000037a46ec
[ 0.000000] 000000000a7fd000 0000000008290000 0000000000000000 0000000000000000
[ 0.000000] 0000000000000000 0000000000000000 00000000019d8000 000000000f556b60
[ 0.000000] 000000000a7fd000 000000000f556b08 9000000003ca7700 9000000003800000
[ 0.000000] 9000000003c93e50 9000000003800898 9000000003800108 90000000037a484c
[ 0.000000] 000000000e0a4330 000000000f556b60 000000000a7fd000 000000000f556b08
[ 0.000000] 9000000003ca7700 9000000004184000 0000000000200000 000000000e02b018
[ 0.000000] 000000000a7fd000 90000000037a0790 9000000003800108 0000000000000000
[ 0.000000] 0000000000000000 000000000e0a4330 000000000f556b60 000000000a7fd000
[ 0.000000] 000000000f556b08 000000000eaae298 000000000eaa5040 0000000000200000
[ 0.000000] ...
[ 0.000000] Call Trace:
[ 0.000000] [<90000000037a5f0c>] efi_runtime_init+0x30/0x94
[ 0.000000] [<90000000037a46ec>] platform_init+0x214/0x250
[ 0.000000] [<90000000037a484c>] setup_arch+0x124/0x45c
[ 0.000000] [<90000000037a0790>] start_kernel+0x90/0x670
[ 0.000000] [<900000000378b0d8>] kernel_entry+0xd8/0xdc |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: Fix a buffer overflow in mgmt_mesh_add()
Smatch Warning:
net/bluetooth/mgmt_util.c:375 mgmt_mesh_add() error: __memcpy()
'mesh_tx->param' too small (48 vs 50)
Analysis:
'mesh_tx->param' is array of size 48. This is the destination.
u8 param[sizeof(struct mgmt_cp_mesh_send) + 29]; // 19 + 29 = 48.
But in the caller 'mesh_send' we reject only when len > 50.
len > (MGMT_MESH_SEND_SIZE + 31) // 19 + 31 = 50. |
In the Linux kernel, the following vulnerability has been resolved:
cifs: potential buffer overflow in handling symlinks
Smatch printed a warning:
arch/x86/crypto/poly1305_glue.c:198 poly1305_update_arch() error:
__memcpy() 'dctx->buf' too small (16 vs u32max)
It's caused because Smatch marks 'link_len' as untrusted since it comes
from sscanf(). Add a check to ensure that 'link_len' is not larger than
the size of the 'link_str' buffer. |
In the Linux kernel, the following vulnerability has been resolved:
wifi: cfg80211: fix buffer overflow in elem comparison
For vendor elements, the code here assumes that 5 octets
are present without checking. Since the element itself is
already checked to fit, we only need to check the length. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: uvc: Prevent buffer overflow in setup handler
Setup function uvc_function_setup permits control transfer
requests with up to 64 bytes of payload (UVC_MAX_REQUEST_SIZE),
data stage handler for OUT transfer uses memcpy to copy req->actual
bytes to uvc_event->data.data array of size 60. This may result
in an overflow of 4 bytes. |