| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
dm thin: fix use-after-free crash in dm_sm_register_threshold_callback
Fault inject on pool metadata device reports:
BUG: KASAN: use-after-free in dm_pool_register_metadata_threshold+0x40/0x80
Read of size 8 at addr ffff8881b9d50068 by task dmsetup/950
CPU: 7 PID: 950 Comm: dmsetup Tainted: G W 5.19.0-rc6 #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.14.0-1.fc33 04/01/2014
Call Trace:
<TASK>
dump_stack_lvl+0x34/0x44
print_address_description.constprop.0.cold+0xeb/0x3f4
kasan_report.cold+0xe6/0x147
dm_pool_register_metadata_threshold+0x40/0x80
pool_ctr+0xa0a/0x1150
dm_table_add_target+0x2c8/0x640
table_load+0x1fd/0x430
ctl_ioctl+0x2c4/0x5a0
dm_ctl_ioctl+0xa/0x10
__x64_sys_ioctl+0xb3/0xd0
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
This can be easily reproduced using:
echo offline > /sys/block/sda/device/state
dd if=/dev/zero of=/dev/mapper/thin bs=4k count=10
dmsetup load pool --table "0 20971520 thin-pool /dev/sda /dev/sdb 128 0 0"
If a metadata commit fails, the transaction will be aborted and the
metadata space maps will be destroyed. If a DM table reload then
happens for this failed thin-pool, a use-after-free will occur in
dm_sm_register_threshold_callback (called from
dm_pool_register_metadata_threshold).
Fix this by in dm_pool_register_metadata_threshold() by returning the
-EINVAL error if the thin-pool is in fail mode. Also fail pool_ctr()
with a new error message: "Error registering metadata threshold". |
| In the Linux kernel, the following vulnerability has been resolved:
posix-cpu-timers: Cleanup CPU timers before freeing them during exec
Commit 55e8c8eb2c7b ("posix-cpu-timers: Store a reference to a pid not a
task") started looking up tasks by PID when deleting a CPU timer.
When a non-leader thread calls execve, it will switch PIDs with the leader
process. Then, as it calls exit_itimers, posix_cpu_timer_del cannot find
the task because the timer still points out to the old PID.
That means that armed timers won't be disarmed, that is, they won't be
removed from the timerqueue_list. exit_itimers will still release their
memory, and when that list is later processed, it leads to a
use-after-free.
Clean up the timers from the de-threaded task before freeing them. This
prevents a reported use-after-free. |
| In the Linux kernel, the following vulnerability has been resolved:
spmi: trace: fix stack-out-of-bound access in SPMI tracing functions
trace_spmi_write_begin() and trace_spmi_read_end() both call
memcpy() with a length of "len + 1". This leads to one extra
byte being read beyond the end of the specified buffer. Fix
this out-of-bound memory access by using a length of "len"
instead.
Here is a KASAN log showing the issue:
BUG: KASAN: stack-out-of-bounds in trace_event_raw_event_spmi_read_end+0x1d0/0x234
Read of size 2 at addr ffffffc0265b7540 by task thermal@2.0-ser/1314
...
Call trace:
dump_backtrace+0x0/0x3e8
show_stack+0x2c/0x3c
dump_stack_lvl+0xdc/0x11c
print_address_description+0x74/0x384
kasan_report+0x188/0x268
kasan_check_range+0x270/0x2b0
memcpy+0x90/0xe8
trace_event_raw_event_spmi_read_end+0x1d0/0x234
spmi_read_cmd+0x294/0x3ac
spmi_ext_register_readl+0x84/0x9c
regmap_spmi_ext_read+0x144/0x1b0 [regmap_spmi]
_regmap_raw_read+0x40c/0x754
regmap_raw_read+0x3a0/0x514
regmap_bulk_read+0x418/0x494
adc5_gen3_poll_wait_hs+0xe8/0x1e0 [qcom_spmi_adc5_gen3]
...
__arm64_sys_read+0x4c/0x60
invoke_syscall+0x80/0x218
el0_svc_common+0xec/0x1c8
...
addr ffffffc0265b7540 is located in stack of task thermal@2.0-ser/1314 at offset 32 in frame:
adc5_gen3_poll_wait_hs+0x0/0x1e0 [qcom_spmi_adc5_gen3]
this frame has 1 object:
[32, 33) 'status'
Memory state around the buggy address:
ffffffc0265b7400: 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 f1 f1
ffffffc0265b7480: 04 f3 f3 f3 00 00 00 00 00 00 00 00 00 00 00 00
>ffffffc0265b7500: 00 00 00 00 f1 f1 f1 f1 01 f3 f3 f3 00 00 00 00
^
ffffffc0265b7580: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffffffc0265b7600: f1 f1 f1 f1 01 f2 07 f2 f2 f2 01 f3 00 00 00 00
================================================================== |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: avoid invalid memory access via node_online(NUMA_NO_NODE)
KASAN reports:
[ 4.668325][ T0] BUG: KASAN: wild-memory-access in dmar_parse_one_rhsa (arch/x86/include/asm/bitops.h:214 arch/x86/include/asm/bitops.h:226 include/asm-generic/bitops/instrumented-non-atomic.h:142 include/linux/nodemask.h:415 drivers/iommu/intel/dmar.c:497)
[ 4.676149][ T0] Read of size 8 at addr 1fffffff85115558 by task swapper/0/0
[ 4.683454][ T0]
[ 4.685638][ T0] CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.19.0-rc3-00004-g0e862838f290 #1
[ 4.694331][ T0] Hardware name: Supermicro SYS-5018D-FN4T/X10SDV-8C-TLN4F, BIOS 1.1 03/02/2016
[ 4.703196][ T0] Call Trace:
[ 4.706334][ T0] <TASK>
[ 4.709133][ T0] ? dmar_parse_one_rhsa (arch/x86/include/asm/bitops.h:214 arch/x86/include/asm/bitops.h:226 include/asm-generic/bitops/instrumented-non-atomic.h:142 include/linux/nodemask.h:415 drivers/iommu/intel/dmar.c:497)
after converting the type of the first argument (@nr, bit number)
of arch_test_bit() from `long` to `unsigned long`[0].
Under certain conditions (for example, when ACPI NUMA is disabled
via command line), pxm_to_node() can return %NUMA_NO_NODE (-1).
It is valid 'magic' number of NUMA node, but not valid bit number
to use in bitops.
node_online() eventually descends to test_bit() without checking
for the input, assuming it's on caller side (which might be good
for perf-critical tasks). There, -1 becomes %ULONG_MAX which leads
to an insane array index when calculating bit position in memory.
For now, add an explicit check for @node being not %NUMA_NO_NODE
before calling test_bit(). The actual logics didn't change here
at all.
[0] https://github.com/norov/linux/commit/0e862838f290147ea9c16db852d8d494b552d38d |
| In the Linux kernel, the following vulnerability has been resolved:
tee: add overflow check in register_shm_helper()
With special lengths supplied by user space, register_shm_helper() has
an integer overflow when calculating the number of pages covered by a
supplied user space memory region.
This causes internal_get_user_pages_fast() a helper function of
pin_user_pages_fast() to do a NULL pointer dereference:
Unable to handle kernel NULL pointer dereference at virtual address 0000000000000010
Modules linked in:
CPU: 1 PID: 173 Comm: optee_example_a Not tainted 5.19.0 #11
Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015
pc : internal_get_user_pages_fast+0x474/0xa80
Call trace:
internal_get_user_pages_fast+0x474/0xa80
pin_user_pages_fast+0x24/0x4c
register_shm_helper+0x194/0x330
tee_shm_register_user_buf+0x78/0x120
tee_ioctl+0xd0/0x11a0
__arm64_sys_ioctl+0xa8/0xec
invoke_syscall+0x48/0x114
Fix this by adding an an explicit call to access_ok() in
tee_shm_register_user_buf() to catch an invalid user space address
early. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: fix warning in ext4_iomap_begin as race between bmap and write
We got issue as follows:
------------[ cut here ]------------
WARNING: CPU: 3 PID: 9310 at fs/ext4/inode.c:3441 ext4_iomap_begin+0x182/0x5d0
RIP: 0010:ext4_iomap_begin+0x182/0x5d0
RSP: 0018:ffff88812460fa08 EFLAGS: 00010293
RAX: ffff88811f168000 RBX: 0000000000000000 RCX: ffffffff97793c12
RDX: 0000000000000000 RSI: 0000000000000000 RDI: 0000000000000003
RBP: ffff88812c669160 R08: ffff88811f168000 R09: ffffed10258cd20f
R10: ffff88812c669077 R11: ffffed10258cd20e R12: 0000000000000001
R13: 00000000000000a4 R14: 000000000000000c R15: ffff88812c6691ee
FS: 00007fd0d6ff3740(0000) GS:ffff8883af180000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fd0d6dda290 CR3: 0000000104a62000 CR4: 00000000000006e0
DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
Call Trace:
iomap_apply+0x119/0x570
iomap_bmap+0x124/0x150
ext4_bmap+0x14f/0x250
bmap+0x55/0x80
do_vfs_ioctl+0x952/0xbd0
__x64_sys_ioctl+0xc6/0x170
do_syscall_64+0x33/0x40
entry_SYSCALL_64_after_hwframe+0x44/0xa9
Above issue may happen as follows:
bmap write
bmap
ext4_bmap
iomap_bmap
ext4_iomap_begin
ext4_file_write_iter
ext4_buffered_write_iter
generic_perform_write
ext4_da_write_begin
ext4_da_write_inline_data_begin
ext4_prepare_inline_data
ext4_create_inline_data
ext4_set_inode_flag(inode,
EXT4_INODE_INLINE_DATA);
if (WARN_ON_ONCE(ext4_has_inline_data(inode))) ->trigger bug_on
To solved above issue hold inode lock in ext4_bamp. |
| In the Linux kernel, the following vulnerability has been resolved:
dm raid: fix address sanitizer warning in raid_status
There is this warning when using a kernel with the address sanitizer
and running this testsuite:
https://gitlab.com/cki-project/kernel-tests/-/tree/main/storage/swraid/scsi_raid
==================================================================
BUG: KASAN: slab-out-of-bounds in raid_status+0x1747/0x2820 [dm_raid]
Read of size 4 at addr ffff888079d2c7e8 by task lvcreate/13319
CPU: 0 PID: 13319 Comm: lvcreate Not tainted 5.18.0-0.rc3.<snip> #1
Hardware name: Red Hat KVM, BIOS 0.5.1 01/01/2011
Call Trace:
<TASK>
dump_stack_lvl+0x6a/0x9c
print_address_description.constprop.0+0x1f/0x1e0
print_report.cold+0x55/0x244
kasan_report+0xc9/0x100
raid_status+0x1747/0x2820 [dm_raid]
dm_ima_measure_on_table_load+0x4b8/0xca0 [dm_mod]
table_load+0x35c/0x630 [dm_mod]
ctl_ioctl+0x411/0x630 [dm_mod]
dm_ctl_ioctl+0xa/0x10 [dm_mod]
__x64_sys_ioctl+0x12a/0x1a0
do_syscall_64+0x5b/0x80
The warning is caused by reading conf->max_nr_stripes in raid_status. The
code in raid_status reads mddev->private, casts it to struct r5conf and
reads the entry max_nr_stripes.
However, if we have different raid type than 4/5/6, mddev->private
doesn't point to struct r5conf; it may point to struct r0conf, struct
r1conf, struct r10conf or struct mpconf. If we cast a pointer to one
of these structs to struct r5conf, we will be reading invalid memory
and KASAN warns about it.
Fix this bug by reading struct r5conf only if raid type is 4, 5 or 6. |
| In the Linux kernel, the following vulnerability has been resolved:
dm raid: fix address sanitizer warning in raid_resume
There is a KASAN warning in raid_resume when running the lvm test
lvconvert-raid.sh. The reason for the warning is that mddev->raid_disks
is greater than rs->raid_disks, so the loop touches one entry beyond
the allocated length. |
| In the Linux kernel, the following vulnerability has been resolved:
block: don't allow the same type rq_qos add more than once
In our test of iocost, we encountered some list add/del corruptions of
inner_walk list in ioc_timer_fn.
The reason can be described as follows:
cpu 0 cpu 1
ioc_qos_write ioc_qos_write
ioc = q_to_ioc(queue);
if (!ioc) {
ioc = kzalloc();
ioc = q_to_ioc(queue);
if (!ioc) {
ioc = kzalloc();
...
rq_qos_add(q, rqos);
}
...
rq_qos_add(q, rqos);
...
}
When the io.cost.qos file is written by two cpus concurrently, rq_qos may
be added to one disk twice. In that case, there will be two iocs enabled
and running on one disk. They own different iocgs on their active list. In
the ioc_timer_fn function, because of the iocgs from two iocs have the
same root iocg, the root iocg's walk_list may be overwritten by each other
and this leads to list add/del corruptions in building or destroying the
inner_walk list.
And so far, the blk-rq-qos framework works in case that one instance for
one type rq_qos per queue by default. This patch make this explicit and
also fix the crash above. |
| In the Linux kernel, the following vulnerability has been resolved:
firmware: arm_scpi: Ensure scpi_info is not assigned if the probe fails
When scpi probe fails, at any point, we need to ensure that the scpi_info
is not set and will remain NULL until the probe succeeds. If it is not
taken care, then it could result use-after-free as the value is exported
via get_scpi_ops() and could refer to a memory allocated via devm_kzalloc()
but freed when the probe fails. |
| In the Linux kernel, the following vulnerability has been resolved:
mm/damon/reclaim: fix potential memory leak in damon_reclaim_init()
damon_reclaim_init() allocates a memory chunk for ctx with
damon_new_ctx(). When damon_select_ops() fails, ctx is not released,
which will lead to a memory leak.
We should release the ctx with damon_destroy_ctx() when damon_select_ops()
fails to fix the memory leak. |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: ensure pages are unlocked on cow_file_range() failure
There is a hung_task report on zoned btrfs like below.
https://github.com/naota/linux/issues/59
[726.328648] INFO: task rocksdb:high0:11085 blocked for more than 241 seconds.
[726.329839] Not tainted 5.16.0-rc1+ #1
[726.330484] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[726.331603] task:rocksdb:high0 state:D stack: 0 pid:11085 ppid: 11082 flags:0x00000000
[726.331608] Call Trace:
[726.331611] <TASK>
[726.331614] __schedule+0x2e5/0x9d0
[726.331622] schedule+0x58/0xd0
[726.331626] io_schedule+0x3f/0x70
[726.331629] __folio_lock+0x125/0x200
[726.331634] ? find_get_entries+0x1bc/0x240
[726.331638] ? filemap_invalidate_unlock_two+0x40/0x40
[726.331642] truncate_inode_pages_range+0x5b2/0x770
[726.331649] truncate_inode_pages_final+0x44/0x50
[726.331653] btrfs_evict_inode+0x67/0x480
[726.331658] evict+0xd0/0x180
[726.331661] iput+0x13f/0x200
[726.331664] do_unlinkat+0x1c0/0x2b0
[726.331668] __x64_sys_unlink+0x23/0x30
[726.331670] do_syscall_64+0x3b/0xc0
[726.331674] entry_SYSCALL_64_after_hwframe+0x44/0xae
[726.331677] RIP: 0033:0x7fb9490a171b
[726.331681] RSP: 002b:00007fb943ffac68 EFLAGS: 00000246 ORIG_RAX: 0000000000000057
[726.331684] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007fb9490a171b
[726.331686] RDX: 00007fb943ffb040 RSI: 000055a6bbe6ec20 RDI: 00007fb94400d300
[726.331687] RBP: 00007fb943ffad00 R08: 0000000000000000 R09: 0000000000000000
[726.331688] R10: 0000000000000031 R11: 0000000000000246 R12: 00007fb943ffb000
[726.331690] R13: 00007fb943ffb040 R14: 0000000000000000 R15: 00007fb943ffd260
[726.331693] </TASK>
While we debug the issue, we found running fstests generic/551 on 5GB
non-zoned null_blk device in the emulated zoned mode also had a
similar hung issue.
Also, we can reproduce the same symptom with an error injected
cow_file_range() setup.
The hang occurs when cow_file_range() fails in the middle of
allocation. cow_file_range() called from do_allocation_zoned() can
split the give region ([start, end]) for allocation depending on
current block group usages. When btrfs can allocate bytes for one part
of the split regions but fails for the other region (e.g. because of
-ENOSPC), we return the error leaving the pages in the succeeded regions
locked. Technically, this occurs only when @unlock == 0. Otherwise, we
unlock the pages in an allocated region after creating an ordered
extent.
Considering the callers of cow_file_range(unlock=0) won't write out
the pages, we can unlock the pages on error exit from
cow_file_range(). So, we can ensure all the pages except @locked_page
are unlocked on error case.
In summary, cow_file_range now behaves like this:
- page_started == 1 (return value)
- All the pages are unlocked. IO is started.
- unlock == 1
- All the pages except @locked_page are unlocked in any case
- unlock == 0
- On success, all the pages are locked for writing out them
- On failure, all the pages except @locked_page are unlocked |
| In the Linux kernel, the following vulnerability has been resolved:
btrfs: replace BTRFS_MAX_EXTENT_SIZE with fs_info->max_extent_size
On zoned filesystem, data write out is limited by max_zone_append_size,
and a large ordered extent is split according the size of a bio. OTOH,
the number of extents to be written is calculated using
BTRFS_MAX_EXTENT_SIZE, and that estimated number is used to reserve the
metadata bytes to update and/or create the metadata items.
The metadata reservation is done at e.g, btrfs_buffered_write() and then
released according to the estimation changes. Thus, if the number of extent
increases massively, the reserved metadata can run out.
The increase of the number of extents easily occurs on zoned filesystem
if BTRFS_MAX_EXTENT_SIZE > max_zone_append_size. And, it causes the
following warning on a small RAM environment with disabling metadata
over-commit (in the following patch).
[75721.498492] ------------[ cut here ]------------
[75721.505624] BTRFS: block rsv 1 returned -28
[75721.512230] WARNING: CPU: 24 PID: 2327559 at fs/btrfs/block-rsv.c:537 btrfs_use_block_rsv+0x560/0x760 [btrfs]
[75721.581854] CPU: 24 PID: 2327559 Comm: kworker/u64:10 Kdump: loaded Tainted: G W 5.18.0-rc2-BTRFS-ZNS+ #109
[75721.597200] Hardware name: Supermicro Super Server/H12SSL-NT, BIOS 2.0 02/22/2021
[75721.607310] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs]
[75721.616209] RIP: 0010:btrfs_use_block_rsv+0x560/0x760 [btrfs]
[75721.646649] RSP: 0018:ffffc9000fbdf3e0 EFLAGS: 00010286
[75721.654126] RAX: 0000000000000000 RBX: 0000000000004000 RCX: 0000000000000000
[75721.663524] RDX: 0000000000000004 RSI: 0000000000000008 RDI: fffff52001f7be6e
[75721.672921] RBP: ffffc9000fbdf420 R08: 0000000000000001 R09: ffff889f8d1fc6c7
[75721.682493] R10: ffffed13f1a3f8d8 R11: 0000000000000001 R12: ffff88980a3c0e28
[75721.692284] R13: ffff889b66590000 R14: ffff88980a3c0e40 R15: ffff88980a3c0e8a
[75721.701878] FS: 0000000000000000(0000) GS:ffff889f8d000000(0000) knlGS:0000000000000000
[75721.712601] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[75721.720726] CR2: 000055d12e05c018 CR3: 0000800193594000 CR4: 0000000000350ee0
[75721.730499] Call Trace:
[75721.735166] <TASK>
[75721.739886] btrfs_alloc_tree_block+0x1e1/0x1100 [btrfs]
[75721.747545] ? btrfs_alloc_logged_file_extent+0x550/0x550 [btrfs]
[75721.756145] ? btrfs_get_32+0xea/0x2d0 [btrfs]
[75721.762852] ? btrfs_get_32+0xea/0x2d0 [btrfs]
[75721.769520] ? push_leaf_left+0x420/0x620 [btrfs]
[75721.776431] ? memcpy+0x4e/0x60
[75721.781931] split_leaf+0x433/0x12d0 [btrfs]
[75721.788392] ? btrfs_get_token_32+0x580/0x580 [btrfs]
[75721.795636] ? push_for_double_split.isra.0+0x420/0x420 [btrfs]
[75721.803759] ? leaf_space_used+0x15d/0x1a0 [btrfs]
[75721.811156] btrfs_search_slot+0x1bc3/0x2790 [btrfs]
[75721.818300] ? lock_downgrade+0x7c0/0x7c0
[75721.824411] ? free_extent_buffer.part.0+0x107/0x200 [btrfs]
[75721.832456] ? split_leaf+0x12d0/0x12d0 [btrfs]
[75721.839149] ? free_extent_buffer.part.0+0x14f/0x200 [btrfs]
[75721.846945] ? free_extent_buffer+0x13/0x20 [btrfs]
[75721.853960] ? btrfs_release_path+0x4b/0x190 [btrfs]
[75721.861429] btrfs_csum_file_blocks+0x85c/0x1500 [btrfs]
[75721.869313] ? rcu_read_lock_sched_held+0x16/0x80
[75721.876085] ? lock_release+0x552/0xf80
[75721.881957] ? btrfs_del_csums+0x8c0/0x8c0 [btrfs]
[75721.888886] ? __kasan_check_write+0x14/0x20
[75721.895152] ? do_raw_read_unlock+0x44/0x80
[75721.901323] ? _raw_write_lock_irq+0x60/0x80
[75721.907983] ? btrfs_global_root+0xb9/0xe0 [btrfs]
[75721.915166] ? btrfs_csum_root+0x12b/0x180 [btrfs]
[75721.921918] ? btrfs_get_global_root+0x820/0x820 [btrfs]
[75721.929166] ? _raw_write_unlock+0x23/0x40
[75721.935116] ? unpin_extent_cache+0x1e3/0x390 [btrfs]
[75721.942041] btrfs_finish_ordered_io.isra.0+0xa0c/0x1dc0 [btrfs]
[75721.949906] ? try_to_wake_up+0x30/0x14a0
[75721.955700] ? btrfs_unlink_subvol+0xda0/0xda0 [btrfs]
[75721.962661] ? rcu
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
locking/csd_lock: Change csdlock_debug from early_param to __setup
The csdlock_debug kernel-boot parameter is parsed by the
early_param() function csdlock_debug(). If set, csdlock_debug()
invokes static_branch_enable() to enable csd_lock_wait feature, which
triggers a panic on arm64 for kernels built with CONFIG_SPARSEMEM=y and
CONFIG_SPARSEMEM_VMEMMAP=n.
With CONFIG_SPARSEMEM_VMEMMAP=n, __nr_to_section is called in
static_key_enable() and returns NULL, resulting in a NULL dereference
because mem_section is initialized only later in sparse_init().
This is also a problem for powerpc because early_param() functions
are invoked earlier than jump_label_init(), also resulting in
static_key_enable() failures. These failures cause the warning "static
key 'xxx' used before call to jump_label_init()".
Thus, early_param is too early for csd_lock_wait to run
static_branch_enable(), so changes it to __setup to fix these. |
| A buffer overflow vulnerability exists in the TOTOLINK A950RG Router firmware V5.9c.4592_B20191022_ALL within the `global.so` binary. The `getSaveConfig` function retrieves the `http_host` parameter from user input via `websGetVar` and copies it into a fixed-size stack buffer (`v13`) using `strcpy()` without performing any length checks. An unauthenticated remote attacker can exploit this vulnerability by sending a specially crafted HTTP request to the router's web interface, potentially leading to arbitrary code execution. |
| A command injection vulnerability exists in the TOTOLINK A950RG Router firmware V5.9c.4592_B20191022_ALL within the `system.so` binary. The `setDiagnosisCfg` function retrieves the `ipDoamin` parameter from user input via `websGetVar` and concatenates it directly into a `ping` system command executed via `CsteSystem()` without any sanitization. An unauthenticated remote attacker can exploit this vulnerability to execute arbitrary commands on the device through specially crafted HTTP requests to the router's web interface. |
| Vasion Print (formerly PrinterLogic) Virtual Appliance Host prior to version 25.1.102 and Application prior to version 25.1.1413 (Windows client deployments) contain a registry key that can be enabled by administrators, causing the client to skip SSL/TLS certificate validation. An attacker who can intercept HTTPS traffic can then inject malicious driver DLLs, resulting in remote code execution with SYSTEM privileges; a local attacker can achieve local privilege escalation via a junction‑point DLL injection. This vulnerability has been confirmed to be remediated, but it is unclear as to when the patch was introduced. |
| Vasion Print (formerly PrinterLogic) Virtual Appliance Host prior to version 25.1.102 and Application prior to version 25.1.1413 (VA/SaaS deployments) contain two hardcoded private keys that are shipped in the application containers (printerlogic/pi, printerlogic/printer-admin-api, and printercloud/pi). The keys are stored in clear text under /var/www/app/config/ as keyfile.ppk.dev and keyfile.saasid.ppk.dev. The application uses these keys as the symmetric secret for AES‑256‑CBC encryption/decryption of the “SaaS Id” (external identifier) through the getEncryptedExternalId() / getDecryptedExternalId() methods. Because the secret is embedded in the deployed image, any attacker who can obtain a copy of the Docker image, read the configuration files, or otherwise enumerate the filesystem can recover the encryption key. This vulnerability has been confirmed to be remediated, but it is unclear as to when the patch was introduced. |
| Vasion Print (formerly PrinterLogic) Virtual Appliance Host prior to version 25.1.102 and Application prior to version 25.1.1413 (VA/SaaS deployments) contain a protection mechanism failure vulnerability within the file_get_contents() function. When an administrator configures a printer’s hostname (or similar callback field), the value is passed unchecked to PHP’s file_get_contents()/cURL functions, which follow redirects and impose no allow‑list, scheme, or IP‑range restrictions. An admin‑level attacker can therefore point the hostname to a malicious web server that issues a 301 redirect to internal endpoints such as the AWS EC2 metadata service. The server follows the redirect, retrieves the metadata, and returns or stores the credentials, enabling the attacker to steal cloud IAM keys, enumerate internal services, and pivot further into the SaaS infrastructure. This vulnerability has been confirmed to be remediated, but it is unclear as to when the patch was introduced. |
| Vasion Print (formerly PrinterLogic) Virtual Appliance Host prior to version 25.1.102 and Application prior to version 25.1.1413 (VA/SaaS deployments) contain a blind server-side request forgery (SSRF) vulnerability reachable via the /var/www/app/console_release/lexmark/dellCheck.php script that can be exploited by an unauthenticated user. When a printer is registered, the software stores the printer’s host name in the variable $printer_vo->str_host_address. The code later builds a URL like 'http://<host‑address>:80/DevMgmt/DiscoveryTree.xml' and sends the request with curl. No validation, whitelist, or private‑network filtering is performed before the request is made. Because the request is blind, an attacker cannot see the data directly, but can still: probe internal services, trigger internal actions, or gather other intelligence. This vulnerability has been confirmed to be remediated, but it is unclear as to when the patch was introduced. |