Filtered by vendor Redhat Subscriptions
Filtered by product Openshift Subscriptions
Total 931 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2023-27903 2 Jenkins, Redhat 3 Jenkins, Ocp Tools, Openshift 2024-08-02 4.4 Medium
Jenkins 2.393 and earlier, LTS 2.375.3 and earlier creates a temporary file in the default temporary directory with the default permissions for newly created files when uploading a file parameter through the CLI, potentially allowing attackers with access to the Jenkins controller file system to read and write the file before it is used.
CVE-2023-27899 2 Jenkins, Redhat 3 Jenkins, Ocp Tools, Openshift 2024-08-02 7.0 High
Jenkins 2.393 and earlier, LTS 2.375.3 and earlier creates a temporary file in the default temporary directory with the default permissions for newly created files when uploading a plugin for installation, potentially allowing attackers with access to the Jenkins controller file system to read and write the file before it is used, potentially resulting in arbitrary code execution.
CVE-2023-27904 2 Jenkins, Redhat 3 Jenkins, Ocp Tools, Openshift 2024-08-02 5.3 Medium
Jenkins 2.393 and earlier, LTS 2.375.3 and earlier prints an error stack trace on agent-related pages when agent connections are broken, potentially revealing information about Jenkins configuration that is otherwise inaccessible to attackers.
CVE-2023-27898 2 Jenkins, Redhat 3 Jenkins, Ocp Tools, Openshift 2024-08-02 9.6 Critical
Jenkins 2.270 through 2.393 (both inclusive), LTS 2.277.1 through 2.375.3 (both inclusive) does not escape the Jenkins version a plugin depends on when rendering the error message stating its incompatibility with the current version of Jenkins, resulting in a stored cross-site scripting (XSS) vulnerability exploitable by attackers able to provide plugins to the configured update sites and have this message shown by Jenkins instances.
CVE-2023-27561 3 Debian, Linuxfoundation, Redhat 5 Debian Linux, Runc, Enterprise Linux and 2 more 2024-08-02 7.0 High
runc through 1.1.4 has Incorrect Access Control leading to Escalation of Privileges, related to libcontainer/rootfs_linux.go. To exploit this, an attacker must be able to spawn two containers with custom volume-mount configurations, and be able to run custom images. NOTE: this issue exists because of a CVE-2019-19921 regression.
CVE-2023-27540 2 Ibm, Redhat 3 Cloud Pak For Data, Watson Cp4d Data Stores, Openshift 2024-08-02 5.9 Medium
IBM Watson CP4D Data Stores 4.6.0 does not properly allocate resources without limits or throttling which could allow a remote attacker with information specific to the system to cause a denial of service. IBM X-Force ID: 248924.
CVE-2023-26159 2 Follow-redirects, Redhat 11 Follow Redirects, Container Native Virtualization, Logging and 8 more 2024-08-02 7.3 High
Versions of the package follow-redirects before 1.15.4 are vulnerable to Improper Input Validation due to the improper handling of URLs by the url.parse() function. When new URL() throws an error, it can be manipulated to misinterpret the hostname. An attacker could exploit this weakness to redirect traffic to a malicious site, potentially leading to information disclosure, phishing attacks, or other security breaches.
CVE-2023-26115 2 Redhat, Word-wrap Project 6 Logging, Network Observ Optr, Openshift and 3 more 2024-08-02 5.3 Medium
All versions of the package word-wrap are vulnerable to Regular Expression Denial of Service (ReDoS) due to the usage of an insecure regular expression within the result variable.
CVE-2023-26136 2 Redhat, Salesforce 7 Acm, Jboss Enterprise Application Platform, Logging and 4 more 2024-08-02 6.5 Medium
Versions of the package tough-cookie before 4.1.3 are vulnerable to Prototype Pollution due to improper handling of Cookies when using CookieJar in rejectPublicSuffixes=false mode. This issue arises from the manner in which the objects are initialized.
CVE-2023-26054 2 Mobyproject, Redhat 3 Buildkit, Openshift, Service Mesh 2024-08-02 6.5 Medium
BuildKit is a toolkit for converting source code to build artifacts in an efficient, expressive and repeatable manner. In affected versions when the user sends a build request that contains a Git URL that contains credentials and the build creates a provenance attestation describing that build, these credentials could be visible from the provenance attestation. Git URL can be passed in two ways: 1) Invoking build directly from a URL with credentials. 2) If the client sends additional version control system (VCS) info hint parameters on builds from a local source. Usually, that would mean reading the origin URL from `.git/config` file. When a build is performed under specific conditions where credentials were passed to BuildKit they may be visible to everyone who has access to provenance attestation. Provenance attestations and VCS info hints were added in version v0.11.0. Previous versions are not vulnerable. In v0.10, when building directly from Git URL, the same URL could be visible in `BuildInfo` structure that is a predecessor of Provenance attestations. Previous versions are not vulnerable. This bug has been fixed in v0.11.4. Users are advised to upgrade. Users unable to upgrade may disable VCS info hints by setting `BUILDX_GIT_INFO=0`. `buildctl` does not set VCS hints based on `.git` directory, and values would need to be passed manually with `--opt`.
CVE-2023-25762 2 Jenkins, Redhat 3 Pipeline\, Ocp Tools, Openshift 2024-08-02 5.4 Medium
Jenkins Pipeline: Build Step Plugin 2.18 and earlier does not escape job names in a JavaScript expression used in the Pipeline Snippet Generator, resulting in a stored cross-site scripting (XSS) vulnerability exploitable by attackers able to control job names.
CVE-2023-25761 2 Jenkins, Redhat 3 Junit, Ocp Tools, Openshift 2024-08-02 5.4 Medium
Jenkins JUnit Plugin 1166.va_436e268e972 and earlier does not escape test case class names in JavaScript expressions, resulting in a stored cross-site scripting (XSS) vulnerability exploitable by attackers able to control test case class names in the JUnit resources processed by the plugin.
CVE-2023-25809 2 Linuxfoundation, Redhat 3 Runc, Enterprise Linux, Openshift 2024-08-02 5 Medium
runc is a CLI tool for spawning and running containers according to the OCI specification. In affected versions it was found that rootless runc makes `/sys/fs/cgroup` writable in following conditons: 1. when runc is executed inside the user namespace, and the `config.json` does not specify the cgroup namespace to be unshared (e.g.., `(docker|podman|nerdctl) run --cgroupns=host`, with Rootless Docker/Podman/nerdctl) or 2. when runc is executed outside the user namespace, and `/sys` is mounted with `rbind, ro` (e.g., `runc spec --rootless`; this condition is very rare). A container may gain the write access to user-owned cgroup hierarchy `/sys/fs/cgroup/user.slice/...` on the host . Other users's cgroup hierarchies are not affected. Users are advised to upgrade to version 1.1.5. Users unable to upgrade may unshare the cgroup namespace (`(docker|podman|nerdctl) run --cgroupns=private)`. This is the default behavior of Docker/Podman/nerdctl on cgroup v2 hosts. or add `/sys/fs/cgroup` to `maskedPaths`.
CVE-2023-25725 3 Debian, Haproxy, Redhat 6 Debian Linux, Haproxy, Ceph Storage and 3 more 2024-08-02 9.1 Critical
HAProxy before 2.7.3 may allow a bypass of access control because HTTP/1 headers are inadvertently lost in some situations, aka "request smuggling." The HTTP header parsers in HAProxy may accept empty header field names, which could be used to truncate the list of HTTP headers and thus make some headers disappear after being parsed and processed for HTTP/1.0 and HTTP/1.1. For HTTP/2 and HTTP/3, the impact is limited because the headers disappear before being parsed and processed, as if they had not been sent by the client. The fixed versions are 2.7.3, 2.6.9, 2.5.12, 2.4.22, 2.2.29, and 2.0.31.
CVE-2023-25577 2 Palletsprojects, Redhat 5 Werkzeug, Openshift, Openshift Ironic and 2 more 2024-08-02 7.5 High
Werkzeug is a comprehensive WSGI web application library. Prior to version 2.2.3, Werkzeug's multipart form data parser will parse an unlimited number of parts, including file parts. Parts can be a small amount of bytes, but each requires CPU time to parse and may use more memory as Python data. If a request can be made to an endpoint that accesses `request.data`, `request.form`, `request.files`, or `request.get_data(parse_form_data=False)`, it can cause unexpectedly high resource usage. This allows an attacker to cause a denial of service by sending crafted multipart data to an endpoint that will parse it. The amount of CPU time required can block worker processes from handling legitimate requests. The amount of RAM required can trigger an out of memory kill of the process. Unlimited file parts can use up memory and file handles. If many concurrent requests are sent continuously, this can exhaust or kill all available workers. Version 2.2.3 contains a patch for this issue.
CVE-2023-25165 2 Helm, Redhat 2 Helm, Openshift 2024-08-02 4.3 Medium
Helm is a tool that streamlines installing and managing Kubernetes applications.`getHostByName` is a Helm template function introduced in Helm v3. The function is able to accept a hostname and return an IP address for that hostname. To get the IP address the function performs a DNS lookup. The DNS lookup happens when used with `helm install|upgrade|template` or when the Helm SDK is used to render a chart. Information passed into the chart can be disclosed to the DNS servers used to lookup the IP address. For example, a malicious chart could inject `getHostByName` into a chart in order to disclose values to a malicious DNS server. The issue has been fixed in Helm 3.11.1. Prior to using a chart with Helm verify the `getHostByName` function is not being used in a template to disclose any information you do not want passed to DNS servers.
CVE-2023-25173 2 Linuxfoundation, Redhat 9 Containerd, Container Native Virtualization, Enterprise Linux and 6 more 2024-08-02 5.3 Medium
containerd is an open source container runtime. A bug was found in containerd prior to versions 1.6.18 and 1.5.18 where supplementary groups are not set up properly inside a container. If an attacker has direct access to a container and manipulates their supplementary group access, they may be able to use supplementary group access to bypass primary group restrictions in some cases, potentially gaining access to sensitive information or gaining the ability to execute code in that container. Downstream applications that use the containerd client library may be affected as well. This bug has been fixed in containerd v1.6.18 and v.1.5.18. Users should update to these versions and recreate containers to resolve this issue. Users who rely on a downstream application that uses containerd's client library should check that application for a separate advisory and instructions. As a workaround, ensure that the `"USER $USERNAME"` Dockerfile instruction is not used. Instead, set the container entrypoint to a value similar to `ENTRYPOINT ["su", "-", "user"]` to allow `su` to properly set up supplementary groups.
CVE-2023-25000 2 Hashicorp, Redhat 3 Vault, Openshift, Openshift Data Foundation 2024-08-02 5 Medium
HashiCorp Vault's implementation of Shamir's secret sharing used precomputed table lookups, and was vulnerable to cache-timing attacks. An attacker with access to, and the ability to observe a large number of unseal operations on the host through a side channel may reduce the search space of a brute force effort to recover the Shamir shares. Fixed in Vault 1.13.1, 1.12.5, and 1.11.9.
CVE-2023-24536 2 Golang, Redhat 19 Go, Advanced Cluster Security, Ansible Automation Platform and 16 more 2024-08-02 7.5 High
Multipart form parsing can consume large amounts of CPU and memory when processing form inputs containing very large numbers of parts. This stems from several causes: 1. mime/multipart.Reader.ReadForm limits the total memory a parsed multipart form can consume. ReadForm can undercount the amount of memory consumed, leading it to accept larger inputs than intended. 2. Limiting total memory does not account for increased pressure on the garbage collector from large numbers of small allocations in forms with many parts. 3. ReadForm can allocate a large number of short-lived buffers, further increasing pressure on the garbage collector. The combination of these factors can permit an attacker to cause an program that parses multipart forms to consume large amounts of CPU and memory, potentially resulting in a denial of service. This affects programs that use mime/multipart.Reader.ReadForm, as well as form parsing in the net/http package with the Request methods FormFile, FormValue, ParseMultipartForm, and PostFormValue. With fix, ReadForm now does a better job of estimating the memory consumption of parsed forms, and performs many fewer short-lived allocations. In addition, the fixed mime/multipart.Reader imposes the following limits on the size of parsed forms: 1. Forms parsed with ReadForm may contain no more than 1000 parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxparts=. 2. Form parts parsed with NextPart and NextRawPart may contain no more than 10,000 header fields. In addition, forms parsed with ReadForm may contain no more than 10,000 header fields across all parts. This limit may be adjusted with the environment variable GODEBUG=multipartmaxheaders=.
CVE-2023-24534 2 Golang, Redhat 22 Go, Advanced Cluster Security, Ansible Automation Platform and 19 more 2024-08-02 7.5 High
HTTP and MIME header parsing can allocate large amounts of memory, even when parsing small inputs, potentially leading to a denial of service. Certain unusual patterns of input data can cause the common function used to parse HTTP and MIME headers to allocate substantially more memory than required to hold the parsed headers. An attacker can exploit this behavior to cause an HTTP server to allocate large amounts of memory from a small request, potentially leading to memory exhaustion and a denial of service. With fix, header parsing now correctly allocates only the memory required to hold parsed headers.