| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| A command injection vulnerability exists in the AOS-CX Operating System. Successful exploitation could allow an authenticated remote attacker to conduct a Remote Code Execution (RCE) on the affected system. |
| A command injection vulnerability exists in the AOS-CX Operating System. Successful exploitation could allow an authenticated remote attacker to conduct a Remote Code Execution (RCE) on the affected system. |
| Claude Code is an agentic coding tool. Prior to version 2.0.31, due to an error in sed command parsing, it was possible to bypass the Claude Code read-only validation and write to arbitrary files on the host system. This issue has been patched in version 2.0.31. |
| A flaw was found in the ABRT daemon’s handling of user-supplied mount information.ABRT copies up to 12 characters from an untrusted input and places them directly into a shell command (docker inspect %s) without proper validation. An unprivileged local user can craft a payload that injects shell metacharacters, causing the root-running ABRT process to execute attacker-controlled commands and ultimately gain full root privileges. |
| TOTOLINK N300RT wireless router firmware versions prior to V3.4.0-B20250430 (discovered in V2.1.8-B20201030.1539) contain an OS command injection vulnerability in the Boa formWsc handling functionality. An unauthenticated attacker can send specially crafted requests to trigger command execution via the targetAPSsid request parameter. |
| vLLM is an inference and serving engine for large language models (LLMs). From versions 0.10.2 to before 0.11.1, a memory corruption vulnerability could lead to a crash (denial-of-service) and potentially remote code execution (RCE), exists in the Completions API endpoint. When processing user-supplied prompt embeddings, the endpoint loads serialized tensors using torch.load() without sufficient validation. Due to a change introduced in PyTorch 2.8.0, sparse tensor integrity checks are disabled by default. As a result, maliciously crafted tensors can bypass internal bounds checks and trigger an out-of-bounds memory write during the call to to_dense(). This memory corruption can crash vLLM and potentially lead to code execution on the server hosting vLLM. This issue has been patched in version 0.11.1. |
| In Modem, there is a possible system crash due to a missing bounds check. This could lead to remote denial of service, if a UE has connected to a rogue base station controlled by the attacker, with no additional execution privileges needed. User interaction is not needed for exploitation. Patch ID: MOLY01661195; Issue ID: MSV-4297. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/omap: Fix buffer overflow in debugfs
There are two issues here:
1) The "len" variable needs to be checked before the very first write.
Otherwise if omap2_iommu_dump_ctx() with "bytes" less than 32 it is a
buffer overflow.
2) The snprintf() function returns the number of bytes that *would* have
been copied if there were enough space. But we want to know the
number of bytes which were *actually* copied so use scnprintf()
instead. |
| In the Linux kernel, the following vulnerability has been resolved:
KVM: s390/diag: fix racy access of physical cpu number in diag 9c handler
We do check for target CPU == -1, but this might change at the time we
are going to use it. Hold the physical target CPU in a local variable to
avoid out-of-bound accesses to the cpu arrays. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: avs: Fix potential RX buffer overflow
If an event caused firmware to return invalid RX size for
LARGE_CONFIG_GET, memcpy_fromio() could end up copying too many bytes.
Fix by utilizing min_t(). |
| An integer overflow in xmlmemory.c in libxml2 before 2.9.5, as used in Google Chrome prior to 62.0.3202.62 and other products, allowed a remote attacker to potentially exploit heap corruption via a crafted XML file. |
| In mmdvfs, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10267218; Issue ID: MSV-5032. |
| In smi, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10259774; Issue ID: MSV-5029. |
| In display, there is a possible out of bounds write due to an integer overflow. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10196993; Issue ID: MSV-4807. |
| In display, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10196993; Issue ID: MSV-4804. |
| In display, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10184870; Issue ID: MSV-4752. |
| In display, there is a possible out of bounds write due to a missing bounds check. This could lead to local escalation of privilege if a malicious actor has already obtained the System privilege. User interaction is not needed for exploitation. Patch ID: ALPS10196993; Issue ID: MSV-4796. |
| Command injection vulnerability in the operating system in Circutor SGE-PLC1000/SGE-PLC50 v9.0.2 through the 'GetDNS()', 'CheckPing()' and 'TraceRoute()' functions. |
| Out-of-bounds write for some Intel(R) QuickAssist Technology software before version 2.2.0 may allow an authenticated user to potentially enable escalation of privilege via local access. |
| A flaw was found in Samba, in the front-end WINS hook handling: NetBIOS names from registration packets are passed to a shell without proper validation or escaping. Unsanitized NetBIOS name data from WINS registration packets are inserted into a shell command and executed by the Samba Active Directory Domain Controller’s wins hook, allowing an unauthenticated network attacker to achieve remote command execution as the Samba process. |