Filtered by vendor Redhat Subscriptions
Filtered by product Amq Streams Subscriptions
Total 108 CVE
CVE Vendors Products Updated CVSS v3.1
CVE-2022-24823 4 Netapp, Netty, Oracle and 1 more 10 Active Iq Unified Manager, Oncommand Workflow Automation, Snapcenter and 7 more 2024-08-03 5.5 Medium
Netty is an open-source, asynchronous event-driven network application framework. The package `io.netty:netty-codec-http` prior to version 4.1.77.Final contains an insufficient fix for CVE-2021-21290. When Netty's multipart decoders are used local information disclosure can occur via the local system temporary directory if temporary storing uploads on the disk is enabled. This only impacts applications running on Java version 6 and lower. Additionally, this vulnerability impacts code running on Unix-like systems, and very old versions of Mac OSX and Windows as they all share the system temporary directory between all users. Version 4.1.77.Final contains a patch for this vulnerability. As a workaround, specify one's own `java.io.tmpdir` when starting the JVM or use DefaultHttpDataFactory.setBaseDir(...) to set the directory to something that is only readable by the current user.
CVE-2022-23305 6 Apache, Broadcom, Netapp and 3 more 46 Log4j, Brocade Sannav, Snapmanager and 43 more 2024-08-03 9.8 Critical
By design, the JDBCAppender in Log4j 1.2.x accepts an SQL statement as a configuration parameter where the values to be inserted are converters from PatternLayout. The message converter, %m, is likely to always be included. This allows attackers to manipulate the SQL by entering crafted strings into input fields or headers of an application that are logged allowing unintended SQL queries to be executed. Note this issue only affects Log4j 1.x when specifically configured to use the JDBCAppender, which is not the default. Beginning in version 2.0-beta8, the JDBCAppender was re-introduced with proper support for parameterized SQL queries and further customization over the columns written to in logs. Apache Log4j 1.2 reached end of life in August 2015. Users should upgrade to Log4j 2 as it addresses numerous other issues from the previous versions.
CVE-2022-23307 4 Apache, Oracle, Qos and 1 more 44 Chainsaw, Log4j, Advanced Supply Chain Planning and 41 more 2024-08-03 8.8 High
CVE-2020-9493 identified a deserialization issue that was present in Apache Chainsaw. Prior to Chainsaw V2.0 Chainsaw was a component of Apache Log4j 1.2.x where the same issue exists.
CVE-2022-23302 6 Apache, Broadcom, Netapp and 3 more 44 Log4j, Brocade Sannav, Snapmanager and 41 more 2024-08-03 8.8 High
JMSSink in all versions of Log4j 1.x is vulnerable to deserialization of untrusted data when the attacker has write access to the Log4j configuration or if the configuration references an LDAP service the attacker has access to. The attacker can provide a TopicConnectionFactoryBindingName configuration causing JMSSink to perform JNDI requests that result in remote code execution in a similar fashion to CVE-2021-4104. Note this issue only affects Log4j 1.x when specifically configured to use JMSSink, which is not the default. Apache Log4j 1.2 reached end of life in August 2015. Users should upgrade to Log4j 2 as it addresses numerous other issues from the previous versions.
CVE-2022-4899 2 Facebook, Redhat 4 Zstandard, Amq Streams, Enterprise Linux and 1 more 2024-08-03 7.5 High
A vulnerability was found in zstd v1.4.10, where an attacker can supply empty string as an argument to the command line tool to cause buffer overrun.
CVE-2022-3171 3 Fedoraproject, Google, Redhat 10 Fedora, Google-protobuf, Protobuf-java and 7 more 2024-08-03 4.3 Medium
A parsing issue with binary data in protobuf-java core and lite versions prior to 3.21.7, 3.20.3, 3.19.6 and 3.16.3 can lead to a denial of service attack. Inputs containing multiple instances of non-repeated embedded messages with repeated or unknown fields causes objects to be converted back-n-forth between mutable and immutable forms, resulting in potentially long garbage collection pauses. We recommend updating to the versions mentioned above.
CVE-2022-2191 2 Eclipse, Redhat 2 Jetty, Amq Streams 2024-08-03 7.5 High
In Eclipse Jetty versions 10.0.0 thru 10.0.9, and 11.0.0 thru 11.0.9 versions, SslConnection does not release ByteBuffers from configured ByteBufferPool in case of error code paths.
CVE-2022-2047 4 Debian, Eclipse, Netapp and 1 more 9 Debian Linux, Jetty, Element Plug-in For Vcenter Server and 6 more 2024-08-03 2.7 Low
In Eclipse Jetty versions 9.4.0 thru 9.4.46, and 10.0.0 thru 10.0.9, and 11.0.0 thru 11.0.9 versions, the parsing of the authority segment of an http scheme URI, the Jetty HttpURI class improperly detects an invalid input as a hostname. This can lead to failures in a Proxy scenario.
CVE-2022-2048 5 Debian, Eclipse, Jenkins and 2 more 12 Debian Linux, Jetty, Jenkins and 9 more 2024-08-03 7.5 High
In Eclipse Jetty HTTP/2 server implementation, when encountering an invalid HTTP/2 request, the error handling has a bug that can wind up not properly cleaning up the active connections and associated resources. This can lead to a Denial of Service scenario where there are no enough resources left to process good requests.
CVE-2023-51074 2 Json-path, Redhat 5 Jayway Jsonpath, Amq Streams, Apache-camel-spring-boot and 2 more 2024-08-02 5.3 Medium
json-path v2.8.0 was discovered to contain a stack overflow via the Criteria.parse() method.
CVE-2023-44981 3 Apache, Debian, Redhat 4 Zookeeper, Debian Linux, Amq Broker and 1 more 2024-08-02 9.1 Critical
Authorization Bypass Through User-Controlled Key vulnerability in Apache ZooKeeper. If SASL Quorum Peer authentication is enabled in ZooKeeper (quorum.auth.enableSasl=true), the authorization is done by verifying that the instance part in SASL authentication ID is listed in zoo.cfg server list. The instance part in SASL auth ID is optional and if it's missing, like 'eve@EXAMPLE.COM', the authorization check will be skipped. As a result an arbitrary endpoint could join the cluster and begin propagating counterfeit changes to the leader, essentially giving it complete read-write access to the data tree. Quorum Peer authentication is not enabled by default. Users are recommended to upgrade to version 3.9.1, 3.8.3, 3.7.2, which fixes the issue. Alternately ensure the ensemble election/quorum communication is protected by a firewall as this will mitigate the issue. See the documentation for more details on correct cluster administration.
CVE-2023-44387 2 Gradle, Redhat 2 Gradle, Amq Streams 2024-08-02 3.2 Low
Gradle is a build tool with a focus on build automation and support for multi-language development. When copying or archiving symlinked files, Gradle resolves them but applies the permissions of the symlink itself instead of the permissions of the linked file to the resulting file. This leads to files having too much permissions given that symlinks usually are world readable and writeable. While it is unlikely this results in a direct vulnerability for the impacted build, it may open up attack vectors depending on where build artifacts end up being copied to or un-archived. In versions 7.6.3, 8.4 and above, Gradle will now properly use the permissions of the file pointed at by the symlink to set permissions of the copied or archived file.
CVE-2023-42445 2 Gradle, Redhat 2 Gradle, Amq Streams 2024-08-02 6.8 Medium
Gradle is a build tool with a focus on build automation and support for multi-language development. In some cases, when Gradle parses XML files, resolving XML external entities is not disabled. Combined with an Out Of Band XXE attack (OOB-XXE), just parsing XML can lead to exfiltration of local text files to a remote server. Gradle parses XML files for several purposes. Most of the time, Gradle parses XML files it generated or were already present locally. Only Ivy XML descriptors and Maven POM files can be fetched from remote repositories and parsed by Gradle. In Gradle 7.6.3 and 8.4, resolving XML external entities has been disabled for all use cases to protect against this vulnerability. Gradle will now refuse to parse XML files that have XML external entities.
CVE-2023-34454 2 Redhat, Xerial 3 Amq Streams, Quarkus, Snappy-java 2024-08-02 5.9 Medium
snappy-java is a fast compressor/decompressor for Java. Due to unchecked multiplications, an integer overflow may occur in versions prior to 1.1.10.1, causing an unrecoverable fatal error. The function `compress(char[] input)` in the file `Snappy.java` receives an array of characters and compresses it. It does so by multiplying the length by 2 and passing it to the rawCompress` function. Since the length is not tested, the multiplication by two can cause an integer overflow and become negative. The rawCompress function then uses the received length and passes it to the natively compiled maxCompressedLength function, using the returned value to allocate a byte array. Since the maxCompressedLength function treats the length as an unsigned integer, it doesn’t care that it is negative, and it returns a valid value, which is casted to a signed integer by the Java engine. If the result is negative, a `java.lang.NegativeArraySizeException` exception will be raised while trying to allocate the array `buf`. On the other side, if the result is positive, the `buf` array will successfully be allocated, but its size might be too small to use for the compression, causing a fatal Access Violation error. The same issue exists also when using the `compress` functions that receive double, float, int, long and short, each using a different multiplier that may cause the same issue. The issue most likely won’t occur when using a byte array, since creating a byte array of size 0x80000000 (or any other negative value) is impossible in the first place. Version 1.1.10.1 contains a patch for this issue.
CVE-2023-34455 2 Redhat, Xerial 7 Amq Broker, Amq Streams, Camel K and 4 more 2024-08-02 7.5 High
snappy-java is a fast compressor/decompressor for Java. Due to use of an unchecked chunk length, an unrecoverable fatal error can occur in versions prior to 1.1.10.1. The code in the function hasNextChunk in the fileSnappyInputStream.java checks if a given stream has more chunks to read. It does that by attempting to read 4 bytes. If it wasn’t possible to read the 4 bytes, the function returns false. Otherwise, if 4 bytes were available, the code treats them as the length of the next chunk. In the case that the `compressed` variable is null, a byte array is allocated with the size given by the input data. Since the code doesn’t test the legality of the `chunkSize` variable, it is possible to pass a negative number (such as 0xFFFFFFFF which is -1), which will cause the code to raise a `java.lang.NegativeArraySizeException` exception. A worse case would happen when passing a huge positive value (such as 0x7FFFFFFF), which would raise the fatal `java.lang.OutOfMemoryError` error. Version 1.1.10.1 contains a patch for this issue.
CVE-2023-34453 2 Redhat, Xerial 3 Amq Streams, Quarkus, Snappy-java 2024-08-02 5.9 Medium
snappy-java is a fast compressor/decompressor for Java. Due to unchecked multiplications, an integer overflow may occur in versions prior to 1.1.10.1, causing a fatal error. The function `shuffle(int[] input)` in the file `BitShuffle.java` receives an array of integers and applies a bit shuffle on it. It does so by multiplying the length by 4 and passing it to the natively compiled shuffle function. Since the length is not tested, the multiplication by four can cause an integer overflow and become a smaller value than the true size, or even zero or negative. In the case of a negative value, a `java.lang.NegativeArraySizeException` exception will raise, which can crash the program. In a case of a value that is zero or too small, the code that afterwards references the shuffled array will assume a bigger size of the array, which might cause exceptions such as `java.lang.ArrayIndexOutOfBoundsException`. The same issue exists also when using the `shuffle` functions that receive a double, float, long and short, each using a different multiplier that may cause the same issue. Version 1.1.10.1 contains a patch for this vulnerability.
CVE-2023-34462 2 Netty, Redhat 11 Netty, Amq Broker, Amq Clients and 8 more 2024-08-02 6.5 Medium
Netty is an asynchronous event-driven network application framework for rapid development of maintainable high performance protocol servers & clients. The `SniHandler` can allocate up to 16MB of heap for each channel during the TLS handshake. When the handler or the channel does not have an idle timeout, it can be used to make a TCP server using the `SniHandler` to allocate 16MB of heap. The `SniHandler` class is a handler that waits for the TLS handshake to configure a `SslHandler` according to the indicated server name by the `ClientHello` record. For this matter it allocates a `ByteBuf` using the value defined in the `ClientHello` record. Normally the value of the packet should be smaller than the handshake packet but there are not checks done here and the way the code is written, it is possible to craft a packet that makes the `SslClientHelloHandler`. This vulnerability has been fixed in version 4.1.94.Final.
CVE-2023-33201 2 Bouncycastle, Redhat 10 Bc-java, Amq Broker, Amq Streams and 7 more 2024-08-02 5.3 Medium
Bouncy Castle For Java before 1.74 is affected by an LDAP injection vulnerability. The vulnerability only affects applications that use an LDAP CertStore from Bouncy Castle to validate X.509 certificates. During the certificate validation process, Bouncy Castle inserts the certificate's Subject Name into an LDAP search filter without any escaping, which leads to an LDAP injection vulnerability.
CVE-2023-26048 2 Eclipse, Redhat 8 Jetty, Amq Streams, Camel Spring Boot and 5 more 2024-08-02 5.3 Medium
Jetty is a java based web server and servlet engine. In affected versions servlets with multipart support (e.g. annotated with `@MultipartConfig`) that call `HttpServletRequest.getParameter()` or `HttpServletRequest.getParts()` may cause `OutOfMemoryError` when the client sends a multipart request with a part that has a name but no filename and very large content. This happens even with the default settings of `fileSizeThreshold=0` which should stream the whole part content to disk. An attacker client may send a large multipart request and cause the server to throw `OutOfMemoryError`. However, the server may be able to recover after the `OutOfMemoryError` and continue its service -- although it may take some time. This issue has been patched in versions 9.4.51, 10.0.14, and 11.0.14. Users are advised to upgrade. Users unable to upgrade may set the multipart parameter `maxRequestSize` which must be set to a non-negative value, so the whole multipart content is limited (although still read into memory).
CVE-2023-26049 4 Debian, Eclipse, Netapp and 1 more 15 Debian Linux, Jetty, Active Iq Unified Manager and 12 more 2024-08-02 2.4 Low
Jetty is a java based web server and servlet engine. Nonstandard cookie parsing in Jetty may allow an attacker to smuggle cookies within other cookies, or otherwise perform unintended behavior by tampering with the cookie parsing mechanism. If Jetty sees a cookie VALUE that starts with `"` (double quote), it will continue to read the cookie string until it sees a closing quote -- even if a semicolon is encountered. So, a cookie header such as: `DISPLAY_LANGUAGE="b; JSESSIONID=1337; c=d"` will be parsed as one cookie, with the name DISPLAY_LANGUAGE and a value of b; JSESSIONID=1337; c=d instead of 3 separate cookies. This has security implications because if, say, JSESSIONID is an HttpOnly cookie, and the DISPLAY_LANGUAGE cookie value is rendered on the page, an attacker can smuggle the JSESSIONID cookie into the DISPLAY_LANGUAGE cookie and thereby exfiltrate it. This is significant when an intermediary is enacting some policy based on cookies, so a smuggled cookie can bypass that policy yet still be seen by the Jetty server or its logging system. This issue has been addressed in versions 9.4.51, 10.0.14, 11.0.14, and 12.0.0.beta0 and users are advised to upgrade. There are no known workarounds for this issue.