| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| Check Point FireWall-1 can be subjected to a denial of service via UDP packets that are sent through VPN-1 to port 0 of a host. |
| Firewall-1 sets a long timeout for connections that begin with ACK or other packets except SYN, allowing an attacker to conduct a denial of service via a large number of connection attempts to unresponsive systems. |
| Check Point Firewall-1 does not properly handle certain restricted keywords (e.g., Mail, auth, time) in user-defined objects, which could produce a rule with a default "ANY" address and result in access to more systems than intended by the administrator. |
| Directory traversal vulnerability in Check Point Firewall-1 R55W before HFA03 allows remote attackers to read arbitrary files via an encoded .. (dot dot) in the URL on TCP port 18264. |
| Check Point Firewall-1 allows remote attackers to bypass port access restrictions on an FTP server by forcing it to send malicious packets that Firewall-1 misinterprets as a valid 227 response to a client's PASV attempt. |
| Check Point VPN-1 SecureClient NG with Application Intelligence R56, NG FP1, 4.0, and 4.1 allows remote attackers to bypass security policies by modifying the local copy of the local.scv policy file after it has been downloaded from the VPN Endpoint. |
| Heap-based buffer overflow in ASN.1 decoding library in Check Point VPN-1 products, when Aggressive Mode IKE is implemented, allows remote attackers to execute arbitrary code by initiating an IKE negotiation and then sending an IKE packet with malformed ASN.1 data. |
| Check Point SecuRemote NG with Application Intelligence R54 allows attackers to obtain credentials and gain privileges via unknown attack vectors. |
| Check Point FireWall-1 4.0 and 4.1 before SP5 allows remote attackers to obtain the IP addresses of internal interfaces via certain SecuRemote requests to TCP ports 256 or 264, which leaks the IP addresses in a reply packet. |
| ZoneAlarm and ZoneAlarm Pro allows a local attacker to cause a denial of service by running a trojan to initialize a ZoneAlarm mutex object which prevents ZoneAlarm from starting. |
| Check Point Firewall-1 allows remote attackers to cause a denial of service by sending a large number of malformed fragmented IP packets. |
| Multiple format string vulnerabilities in HTTP Application Intelligence (AI) component in Check Point Firewall-1 NG-AI R55 and R54, and Check Point Firewall-1 HTTP Security Server included with NG FP1, FP2, and FP3 allows remote attackers to execute arbitrary code via HTTP requests that cause format string specifiers to be used in an error message, as demonstrated using the scheme of a URI. |
| Stack-based buffer overflow in Check Point VPN-1 Server 4.1 through 4.1 SP6 and Check Point SecuRemote/SecureClient 4.1 through 4.1 build 4200 allows remote attackers to execute arbitrary code via an ISAKMP packet with a large Certificate Request packet. |
| Buffer overflow in the ISAKMP functionality for Check Point VPN-1 and FireWall-1 NG products, before VPN-1/FireWall-1 R55 HFA-03, R54 HFA-410 and NG FP3 HFA-325, or VPN-1 SecuRemote/SecureClient R56, may allow remote attackers to execute arbitrary code during VPN tunnel negotiation. |
| Check Point FireWall-1 3.0b through 4.1 for Solaris allows local users to overwrite arbitrary files via a symlink attack on temporary policy files that end in a .cpp extension, which are set world-writable. |
| Format string vulnerability in Check Point VPN-1/FireWall-1 4.1 allows a remote authenticated firewall administrator to execute arbitrary code via format strings in the control connection. |
| Check Point VPN-1/FireWall-1 4.1 and earlier allows remote attackers to redirect FTP connections to other servers ("FTP Bounce") via invalid FTP commands that are processed improperly by FireWall-1, aka "FTP Connection Enforcement Bypass." |
| OpenSSL 0.9.6 before 0.9.6d does not properly handle unknown message types, which allows remote attackers to cause a denial of service (infinite loop), as demonstrated using the Codenomicon TLS Test Tool. |
| The SSL/TLS handshaking code in OpenSSL 0.9.7a, 0.9.7b, and 0.9.7c, when using Kerberos ciphersuites, does not properly check the length of Kerberos tickets during a handshake, which allows remote attackers to cause a denial of service (crash) via a crafted SSL/TLS handshake that causes an out-of-bounds read. |
| Local user may lead to privilege escalation using Gaia Portal hostnames page. |