CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Windows Secure Socket Tunneling Protocol (SSTP) Remote Code Execution Vulnerability |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: don't abort filesystem when attempting to snapshot deleted subvolume
If the source file descriptor to the snapshot ioctl refers to a deleted
subvolume, we get the following abort:
BTRFS: Transaction aborted (error -2)
WARNING: CPU: 0 PID: 833 at fs/btrfs/transaction.c:1875 create_pending_snapshot+0x1040/0x1190 [btrfs]
Modules linked in: pata_acpi btrfs ata_piix libata scsi_mod virtio_net blake2b_generic xor net_failover virtio_rng failover scsi_common rng_core raid6_pq libcrc32c
CPU: 0 PID: 833 Comm: t_snapshot_dele Not tainted 6.7.0-rc6 #2
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.16.3-1.fc39 04/01/2014
RIP: 0010:create_pending_snapshot+0x1040/0x1190 [btrfs]
RSP: 0018:ffffa09c01337af8 EFLAGS: 00010282
RAX: 0000000000000000 RBX: ffff9982053e7c78 RCX: 0000000000000027
RDX: ffff99827dc20848 RSI: 0000000000000001 RDI: ffff99827dc20840
RBP: ffffa09c01337c00 R08: 0000000000000000 R09: ffffa09c01337998
R10: 0000000000000003 R11: ffffffffb96da248 R12: fffffffffffffffe
R13: ffff99820535bb28 R14: ffff99820b7bd000 R15: ffff99820381ea80
FS: 00007fe20aadabc0(0000) GS:ffff99827dc00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000559a120b502f CR3: 00000000055b6000 CR4: 00000000000006f0
Call Trace:
<TASK>
? create_pending_snapshot+0x1040/0x1190 [btrfs]
? __warn+0x81/0x130
? create_pending_snapshot+0x1040/0x1190 [btrfs]
? report_bug+0x171/0x1a0
? handle_bug+0x3a/0x70
? exc_invalid_op+0x17/0x70
? asm_exc_invalid_op+0x1a/0x20
? create_pending_snapshot+0x1040/0x1190 [btrfs]
? create_pending_snapshot+0x1040/0x1190 [btrfs]
create_pending_snapshots+0x92/0xc0 [btrfs]
btrfs_commit_transaction+0x66b/0xf40 [btrfs]
btrfs_mksubvol+0x301/0x4d0 [btrfs]
btrfs_mksnapshot+0x80/0xb0 [btrfs]
__btrfs_ioctl_snap_create+0x1c2/0x1d0 [btrfs]
btrfs_ioctl_snap_create_v2+0xc4/0x150 [btrfs]
btrfs_ioctl+0x8a6/0x2650 [btrfs]
? kmem_cache_free+0x22/0x340
? do_sys_openat2+0x97/0xe0
__x64_sys_ioctl+0x97/0xd0
do_syscall_64+0x46/0xf0
entry_SYSCALL_64_after_hwframe+0x6e/0x76
RIP: 0033:0x7fe20abe83af
RSP: 002b:00007ffe6eff1360 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
RAX: ffffffffffffffda RBX: 0000000000000004 RCX: 00007fe20abe83af
RDX: 00007ffe6eff23c0 RSI: 0000000050009417 RDI: 0000000000000003
RBP: 0000000000000003 R08: 0000000000000000 R09: 00007fe20ad16cd0
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 00007ffe6eff13c0 R14: 00007fe20ad45000 R15: 0000559a120b6d58
</TASK>
---[ end trace 0000000000000000 ]---
BTRFS: error (device vdc: state A) in create_pending_snapshot:1875: errno=-2 No such entry
BTRFS info (device vdc: state EA): forced readonly
BTRFS warning (device vdc: state EA): Skipping commit of aborted transaction.
BTRFS: error (device vdc: state EA) in cleanup_transaction:2055: errno=-2 No such entry
This happens because create_pending_snapshot() initializes the new root
item as a copy of the source root item. This includes the refs field,
which is 0 for a deleted subvolume. The call to btrfs_insert_root()
therefore inserts a root with refs == 0. btrfs_get_new_fs_root() then
finds the root and returns -ENOENT if refs == 0, which causes
create_pending_snapshot() to abort.
Fix it by checking the source root's refs before attempting the
snapshot, but after locking subvol_sem to avoid racing with deletion. |
Bouncy Castle BC Java before 1.66, BC C# .NET before 1.8.7, BC-FJA before 1.0.1.2, 1.0.2.1, and BC-FNA before 1.0.1.1 have a timing issue within the EC math library that can expose information about the private key when an attacker is able to observe timing information for the generation of multiple deterministic ECDSA signatures. |
Azure Identity Libraries and Microsoft Authentication Library Elevation of Privilege Vulnerability |
Sensitive data storage in improperly locked memory in Remote Desktop Gateway Service allows an unauthorized attacker to deny service over a network. |
Concurrent execution using shared resource with improper synchronization ('race condition') in Universal Print Management Service allows an authorized attacker to elevate privileges locally. |
Improper privilege management in Windows Secure Kernel Mode allows an authorized attacker to elevate privileges locally. |
A race condition in the Nix, Lix, and Guix package managers enables changing the ownership of arbitrary files to the UID and GID of the build user (e.g., nixbld* or guixbuild*). This affects Nix before 2.24.15, 2.26.4, 2.28.4, and 2.29.1; Lix before 2.91.2, 2.92.2, and 2.93.1; and Guix before 1.4.0-38.0e79d5b. |
A security issue was discovered in Kubernetes where a malicious or compromised pod could bypass network restrictions enforced by network policies during namespace deletion. The order in which objects are deleted during namespace termination is not defined, and it is possible for network policies to be deleted before the pods that they protect. This can lead to a brief period in which the pods are running, but network policies that should apply to connections to and from the pods are not enforced. |
In the Linux kernel, the following vulnerability has been resolved:
net/mlx5: Use del_timer_sync in fw reset flow of halting poll
Substitute del_timer() with del_timer_sync() in fw reset polling
deactivation flow, in order to prevent a race condition which occurs
when del_timer() is called and timer is deactivated while another
process is handling the timer interrupt. A situation that led to
the following call trace:
RIP: 0010:run_timer_softirq+0x137/0x420
<IRQ>
recalibrate_cpu_khz+0x10/0x10
ktime_get+0x3e/0xa0
? sched_clock_cpu+0xb/0xc0
__do_softirq+0xf5/0x2ea
irq_exit_rcu+0xc1/0xf0
sysvec_apic_timer_interrupt+0x9e/0xc0
asm_sysvec_apic_timer_interrupt+0x12/0x20
</IRQ> |
Mattermost versions 10.1.x <= 10.1.2, 10.0.x <= 10.0.2, 9.11.x <= 9.11.4, and 9.5.x <= 9.5.12 fail to prevent concurrently checking and updating the failed login attempts. which allows an attacker to bypass of "Max failed attempts" restriction and send a big number of login attempts before being blocked via simultaneously sending multiple login requests |
A Speculative Race Condition (SRC) vulnerability that impacts modern CPU architectures supporting speculative execution (related to Spectre V1) has been disclosed. An unauthenticated attacker can exploit this vulnerability to disclose arbitrary data from the CPU using race conditions to access the speculative executable code paths. |
In the Linux kernel, the following vulnerability has been resolved:
io-wq: check for wq exit after adding new worker task_work
We check IO_WQ_BIT_EXIT before attempting to create a new worker, and
wq exit cancels pending work if we have any. But it's possible to have
a race between the two, where creation checks exit finding it not set,
but we're in the process of exiting. The exit side will cancel pending
creation task_work, but there's a gap where we add task_work after we've
canceled existing creations at exit time.
Fix this by checking the EXIT bit post adding the creation task_work.
If it's set, run the same cancelation that exit does. |
In the Linux kernel, the following vulnerability has been resolved:
net: tun: unlink NAPI from device on destruction
Syzbot found a race between tun file and device destruction.
NAPIs live in struct tun_file which can get destroyed before
the netdev so we have to del them explicitly. The current
code is missing deleting the NAPI if the queue was detached
first. |
In the Linux kernel, the following vulnerability has been resolved:
rxrpc: Fix call timer start racing with call destruction
The rxrpc_call struct has a timer used to handle various timed events
relating to a call. This timer can get started from the packet input
routines that are run in softirq mode with just the RCU read lock held.
Unfortunately, because only the RCU read lock is held - and neither ref or
other lock is taken - the call can start getting destroyed at the same time
a packet comes in addressed to that call. This causes the timer - which
was already stopped - to get restarted. Later, the timer dispatch code may
then oops if the timer got deallocated first.
Fix this by trying to take a ref on the rxrpc_call struct and, if
successful, passing that ref along to the timer. If the timer was already
running, the ref is discarded.
The timer completion routine can then pass the ref along to the call's work
item when it queues it. If the timer or work item where already
queued/running, the extra ref is discarded. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amd/display: Disable idle reallow as part of command/gpint execution
[Why]
Workaroud for a race condition where DMCUB is in the process of
committing to IPS1 during the handshake causing us to miss the
transition into IPS2 and touch the INBOX1 RPTR causing a HW hang.
[How]
Disable the reallow to ensure that we have enough of a gap between entry
and exit and we're not seeing back-to-back wake_and_executes. |
In the Linux kernel, the following vulnerability has been resolved:
tcp: Fix data-races around sysctl_tcp_max_reordering.
While reading sysctl_tcp_max_reordering, it can be changed
concurrently. Thus, we need to add READ_ONCE() to its readers. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix racy may inline data check in dio write
syzbot reports that the following warning from ext4_iomap_begin()
triggers as of the commit referenced below:
if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
return -ERANGE;
This occurs during a dio write, which is never expected to encounter
an inode with inline data. To enforce this behavior,
ext4_dio_write_iter() checks the current inline state of the inode
and clears the MAY_INLINE_DATA state flag to either fall back to
buffered writes, or enforce that any other writers in progress on
the inode are not allowed to create inline data.
The problem is that the check for existing inline data and the state
flag can span a lock cycle. For example, if the ilock is originally
locked shared and subsequently upgraded to exclusive, another writer
may have reacquired the lock and created inline data before the dio
write task acquires the lock and proceeds.
The commit referenced below loosens the lock requirements to allow
some forms of unaligned dio writes to occur under shared lock, but
AFAICT the inline data check was technically already racy for any
dio write that would have involved a lock cycle. Regardless, lift
clearing of the state bit to the same lock critical section that
checks for preexisting inline data on the inode to close the race. |
In the Linux kernel, the following vulnerability has been resolved:
m68k: Fix spinlock race in kernel thread creation
Context switching does take care to retain the correct lock owner across
the switch from 'prev' to 'next' tasks. This does rely on interrupts
remaining disabled for the entire duration of the switch.
This condition is guaranteed for normal process creation and context
switching between already running processes, because both 'prev' and
'next' already have interrupts disabled in their saved copies of the
status register.
The situation is different for newly created kernel threads. The status
register is set to PS_S in copy_thread(), which does leave the IPL at 0.
Upon restoring the 'next' thread's status register in switch_to() aka
resume(), interrupts then become enabled prematurely. resume() then
returns via ret_from_kernel_thread() and schedule_tail() where run queue
lock is released (see finish_task_switch() and finish_lock_switch()).
A timer interrupt calling scheduler_tick() before the lock is released
in finish_task_switch() will find the lock already taken, with the
current task as lock owner. This causes a spinlock recursion warning as
reported by Guenter Roeck.
As far as I can ascertain, this race has been opened in commit
533e6903bea0 ("m68k: split ret_from_fork(), simplify kernel_thread()")
but I haven't done a detailed study of kernel history so it may well
predate that commit.
Interrupts cannot be disabled in the saved status register copy for
kernel threads (init will complain about interrupts disabled when
finally starting user space). Disable interrupts temporarily when
switching the tasks' register sets in resume().
Note that a simple oriw 0x700,%sr after restoring sr is not enough here
- this leaves enough of a race for the 'spinlock recursion' warning to
still be observed.
Tested on ARAnyM and qemu (Quadra 800 emulation). |
In the Linux kernel, the following vulnerability has been resolved:
net: annotate races around sk->sk_bound_dev_if
UDP sendmsg() is lockless, and reads sk->sk_bound_dev_if while
this field can be changed by another thread.
Adds minimal annotations to avoid KCSAN splats for UDP.
Following patches will add more annotations to potential lockless readers.
BUG: KCSAN: data-race in __ip6_datagram_connect / udpv6_sendmsg
write to 0xffff888136d47a94 of 4 bytes by task 7681 on cpu 0:
__ip6_datagram_connect+0x6e2/0x930 net/ipv6/datagram.c:221
ip6_datagram_connect+0x2a/0x40 net/ipv6/datagram.c:272
inet_dgram_connect+0x107/0x190 net/ipv4/af_inet.c:576
__sys_connect_file net/socket.c:1900 [inline]
__sys_connect+0x197/0x1b0 net/socket.c:1917
__do_sys_connect net/socket.c:1927 [inline]
__se_sys_connect net/socket.c:1924 [inline]
__x64_sys_connect+0x3d/0x50 net/socket.c:1924
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x50 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
read to 0xffff888136d47a94 of 4 bytes by task 7670 on cpu 1:
udpv6_sendmsg+0xc60/0x16e0 net/ipv6/udp.c:1436
inet6_sendmsg+0x5f/0x80 net/ipv6/af_inet6.c:652
sock_sendmsg_nosec net/socket.c:705 [inline]
sock_sendmsg net/socket.c:725 [inline]
____sys_sendmsg+0x39a/0x510 net/socket.c:2413
___sys_sendmsg net/socket.c:2467 [inline]
__sys_sendmmsg+0x267/0x4c0 net/socket.c:2553
__do_sys_sendmmsg net/socket.c:2582 [inline]
__se_sys_sendmmsg net/socket.c:2579 [inline]
__x64_sys_sendmmsg+0x53/0x60 net/socket.c:2579
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x2b/0x50 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x44/0xae
value changed: 0x00000000 -> 0xffffff9b
Reported by Kernel Concurrency Sanitizer on:
CPU: 1 PID: 7670 Comm: syz-executor.3 Tainted: G W 5.18.0-rc1-syzkaller-dirty #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
I chose to not add Fixes: tag because race has minor consequences
and stable teams busy enough. |