| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
nvmet-fc: move lsop put work to nvmet_fc_ls_req_op
It’s possible for more than one async command to be in flight from
__nvmet_fc_send_ls_req. For each command, a tgtport reference is taken.
In the current code, only one put work item is queued at a time, which
results in a leaked reference.
To fix this, move the work item to the nvmet_fc_ls_req_op struct, which
already tracks all resources related to the command. |
| In the Linux kernel, the following vulnerability has been resolved:
net: use dst_dev_rcu() in sk_setup_caps()
Use RCU to protect accesses to dst->dev from sk_setup_caps()
and sk_dst_gso_max_size().
Also use dst_dev_rcu() in ip6_dst_mtu_maybe_forward(),
and ip_dst_mtu_maybe_forward().
ip4_dst_hoplimit() can use dst_dev_net_rcu(). |
| In the Linux kernel, the following vulnerability has been resolved:
bpf: Reject negative offsets for ALU ops
When verifying BPF programs, the check_alu_op() function validates
instructions with ALU operations. The 'offset' field in these
instructions is a signed 16-bit integer.
The existing check 'insn->off > 1' was intended to ensure the offset is
either 0, or 1 for BPF_MOD/BPF_DIV. However, because 'insn->off' is
signed, this check incorrectly accepts all negative values (e.g., -1).
This commit tightens the validation by changing the condition to
'(insn->off != 0 && insn->off != 1)'. This ensures that any value
other than the explicitly permitted 0 and 1 is rejected, hardening the
verifier against malformed BPF programs. |
| In the Linux kernel, the following vulnerability has been resolved:
smc: Use __sk_dst_get() and dst_dev_rcu() in smc_clc_prfx_match().
smc_clc_prfx_match() is called from smc_listen_work() and
not under RCU nor RTNL.
Using sk_dst_get(sk)->dev could trigger UAF.
Let's use __sk_dst_get() and dst_dev_rcu().
Note that the returned value of smc_clc_prfx_match() is not
used in the caller. |
| In the Linux kernel, the following vulnerability has been resolved:
ext4: detect invalid INLINE_DATA + EXTENTS flag combination
syzbot reported a BUG_ON in ext4_es_cache_extent() when opening a verity
file on a corrupted ext4 filesystem mounted without a journal.
The issue is that the filesystem has an inode with both the INLINE_DATA
and EXTENTS flags set:
EXT4-fs error (device loop0): ext4_cache_extents:545: inode #15:
comm syz.0.17: corrupted extent tree: lblk 0 < prev 66
Investigation revealed that the inode has both flags set:
DEBUG: inode 15 - flag=1, i_inline_off=164, has_inline=1, extents_flag=1
This is an invalid combination since an inode should have either:
- INLINE_DATA: data stored directly in the inode
- EXTENTS: data stored in extent-mapped blocks
Having both flags causes ext4_has_inline_data() to return true, skipping
extent tree validation in __ext4_iget(). The unvalidated out-of-order
extents then trigger a BUG_ON in ext4_es_cache_extent() due to integer
underflow when calculating hole sizes.
Fix this by detecting this invalid flag combination early in ext4_iget()
and rejecting the corrupted inode. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/xe/guc: Check GuC running state before deregistering exec queue
In normal operation, a registered exec queue is disabled and
deregistered through the GuC, and freed only after the GuC confirms
completion. However, if the driver is forced to unbind while the exec
queue is still running, the user may call exec_destroy() after the GuC
has already been stopped and CT communication disabled.
In this case, the driver cannot receive a response from the GuC,
preventing proper cleanup of exec queue resources. Fix this by directly
releasing the resources when GuC is not running.
Here is the failure dmesg log:
"
[ 468.089581] ---[ end trace 0000000000000000 ]---
[ 468.089608] pci 0000:03:00.0: [drm] *ERROR* GT0: GUC ID manager unclean (1/65535)
[ 468.090558] pci 0000:03:00.0: [drm] GT0: total 65535
[ 468.090562] pci 0000:03:00.0: [drm] GT0: used 1
[ 468.090564] pci 0000:03:00.0: [drm] GT0: range 1..1 (1)
[ 468.092716] ------------[ cut here ]------------
[ 468.092719] WARNING: CPU: 14 PID: 4775 at drivers/gpu/drm/xe/xe_ttm_vram_mgr.c:298 ttm_vram_mgr_fini+0xf8/0x130 [xe]
"
v2: use xe_uc_fw_is_running() instead of xe_guc_ct_enabled().
As CT may go down and come back during VF migration.
(cherry picked from commit 9b42321a02c50a12b2beb6ae9469606257fbecea) |
| In the Linux kernel, the following vulnerability has been resolved:
media: nxp: imx8-isi: m2m: Fix streaming cleanup on release
If streamon/streamoff calls are imbalanced, such as when exiting an
application with Ctrl+C when streaming, the m2m usage_count will never
reach zero and the ISI channel won't be freed. Besides from that, if the
input line width is more than 2K, it will trigger a WARN_ON():
[ 59.222120] ------------[ cut here ]------------
[ 59.226758] WARNING: drivers/media/platform/nxp/imx8-isi/imx8-isi-hw.c:631 at mxc_isi_channel_chain+0xa4/0x120, CPU#4: v4l2-ctl/654
[ 59.238569] Modules linked in: ap1302
[ 59.242231] CPU: 4 UID: 0 PID: 654 Comm: v4l2-ctl Not tainted 6.16.0-rc4-next-20250704-06511-gff0e002d480a-dirty #258 PREEMPT
[ 59.253597] Hardware name: NXP i.MX95 15X15 board (DT)
[ 59.258720] pstate: 80400009 (Nzcv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 59.265669] pc : mxc_isi_channel_chain+0xa4/0x120
[ 59.270358] lr : mxc_isi_channel_chain+0x44/0x120
[ 59.275047] sp : ffff8000848c3b40
[ 59.278348] x29: ffff8000848c3b40 x28: ffff0000859b4c98 x27: ffff800081939f00
[ 59.285472] x26: 000000000000000a x25: ffff0000859b4cb8 x24: 0000000000000001
[ 59.292597] x23: ffff0000816f4760 x22: ffff0000816f4258 x21: ffff000084ceb780
[ 59.299720] x20: ffff000084342ff8 x19: ffff000084340000 x18: 0000000000000000
[ 59.306845] x17: 0000000000000000 x16: 0000000000000000 x15: 0000ffffdb369e1c
[ 59.313969] x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
[ 59.321093] x11: 0000000000000000 x10: 0000000000000000 x9 : 0000000000000000
[ 59.328217] x8 : ffff8000848c3d48 x7 : ffff800081930b30 x6 : ffff800081930b30
[ 59.335340] x5 : ffff0000859b6000 x4 : ffff80008193ae80 x3 : ffff800081022420
[ 59.342464] x2 : ffff0000852f6900 x1 : 0000000000000001 x0 : ffff000084341000
[ 59.349590] Call trace:
[ 59.352025] mxc_isi_channel_chain+0xa4/0x120 (P)
[ 59.356722] mxc_isi_m2m_streamon+0x160/0x20c
[ 59.361072] v4l_streamon+0x24/0x30
[ 59.364556] __video_do_ioctl+0x40c/0x4a0
[ 59.368560] video_usercopy+0x2bc/0x690
[ 59.372382] video_ioctl2+0x18/0x24
[ 59.375857] v4l2_ioctl+0x40/0x60
[ 59.379168] __arm64_sys_ioctl+0xac/0x104
[ 59.383172] invoke_syscall+0x48/0x104
[ 59.386916] el0_svc_common.constprop.0+0xc0/0xe0
[ 59.391613] do_el0_svc+0x1c/0x28
[ 59.394915] el0_svc+0x34/0xf4
[ 59.397966] el0t_64_sync_handler+0xa0/0xe4
[ 59.402143] el0t_64_sync+0x198/0x19c
[ 59.405801] ---[ end trace 0000000000000000 ]---
Address this issue by moving the streaming preparation and cleanup to
the vb2 .prepare_streaming() and .unprepare_streaming() operations. This
also simplifies the driver by allowing direct usage of the
v4l2_m2m_ioctl_streamon() and v4l2_m2m_ioctl_streamoff() helpers. |
| In the Linux kernel, the following vulnerability has been resolved:
usbnet: Fix using smp_processor_id() in preemptible code warnings
Syzbot reported the following warning:
BUG: using smp_processor_id() in preemptible [00000000] code: dhcpcd/2879
caller is usbnet_skb_return+0x74/0x490 drivers/net/usb/usbnet.c:331
CPU: 1 UID: 0 PID: 2879 Comm: dhcpcd Not tainted 6.15.0-rc4-syzkaller-00098-g615dca38c2ea #0 PREEMPT(voluntary)
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x16c/0x1f0 lib/dump_stack.c:120
check_preemption_disabled+0xd0/0xe0 lib/smp_processor_id.c:49
usbnet_skb_return+0x74/0x490 drivers/net/usb/usbnet.c:331
usbnet_resume_rx+0x4b/0x170 drivers/net/usb/usbnet.c:708
usbnet_change_mtu+0x1be/0x220 drivers/net/usb/usbnet.c:417
__dev_set_mtu net/core/dev.c:9443 [inline]
netif_set_mtu_ext+0x369/0x5c0 net/core/dev.c:9496
netif_set_mtu+0xb0/0x160 net/core/dev.c:9520
dev_set_mtu+0xae/0x170 net/core/dev_api.c:247
dev_ifsioc+0xa31/0x18d0 net/core/dev_ioctl.c:572
dev_ioctl+0x223/0x10e0 net/core/dev_ioctl.c:821
sock_do_ioctl+0x19d/0x280 net/socket.c:1204
sock_ioctl+0x42f/0x6a0 net/socket.c:1311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:906 [inline]
__se_sys_ioctl fs/ioctl.c:892 [inline]
__x64_sys_ioctl+0x190/0x200 fs/ioctl.c:892
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcd/0x260 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
For historical and portability reasons, the netif_rx() is usually
run in the softirq or interrupt context, this commit therefore add
local_bh_disable/enable() protection in the usbnet_resume_rx(). |
| In the Linux kernel, the following vulnerability has been resolved:
sched/deadline: Stop dl_server before CPU goes offline
IBM CI tool reported kernel warning[1] when running a CPU removal
operation through drmgr[2]. i.e "drmgr -c cpu -r -q 1"
WARNING: CPU: 0 PID: 0 at kernel/sched/cpudeadline.c:219 cpudl_set+0x58/0x170
NIP [c0000000002b6ed8] cpudl_set+0x58/0x170
LR [c0000000002b7cb8] dl_server_timer+0x168/0x2a0
Call Trace:
[c000000002c2f8c0] init_stack+0x78c0/0x8000 (unreliable)
[c0000000002b7cb8] dl_server_timer+0x168/0x2a0
[c00000000034df84] __hrtimer_run_queues+0x1a4/0x390
[c00000000034f624] hrtimer_interrupt+0x124/0x300
[c00000000002a230] timer_interrupt+0x140/0x320
Git bisects to: commit 4ae8d9aa9f9d ("sched/deadline: Fix dl_server getting stuck")
This happens since:
- dl_server hrtimer gets enqueued close to cpu offline, when
kthread_park enqueues a fair task.
- CPU goes offline and drmgr removes it from cpu_present_mask.
- hrtimer fires and warning is hit.
Fix it by stopping the dl_server before CPU is marked dead.
[1]: https://lore.kernel.org/all/8218e149-7718-4432-9312-f97297c352b9@linux.ibm.com/
[2]: https://github.com/ibm-power-utilities/powerpc-utils/tree/next/src/drmgr
[sshegde: wrote the changelog and tested it] |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: amd/sdw_utils: avoid NULL deref when devm_kasprintf() fails
devm_kasprintf() may return NULL on memory allocation failure,
but the debug message prints cpus->dai_name before checking it.
Move the dev_dbg() call after the NULL check to prevent potential
NULL pointer dereference. |
| In the Linux kernel, the following vulnerability has been resolved:
mailbox: zynqmp-ipi: Fix SGI cleanup on unbind
The driver incorrectly determines SGI vs SPI interrupts by checking IRQ
number < 16, which fails with dynamic IRQ allocation. During unbind,
this causes improper SGI cleanup leading to kernel crash.
Add explicit irq_type field to pdata for reliable identification of SGI
interrupts (type-2) and only clean up SGI resources when appropriate. |
| In the Linux kernel, the following vulnerability has been resolved:
xen/events: Return -EEXIST for bound VIRQs
Change find_virq() to return -EEXIST when a VIRQ is bound to a
different CPU than the one passed in. With that, remove the BUG_ON()
from bind_virq_to_irq() to propogate the error upwards.
Some VIRQs are per-cpu, but others are per-domain or global. Those must
be bound to CPU0 and can then migrate elsewhere. The lookup for
per-domain and global will probably fail when migrated off CPU 0,
especially when the current CPU is tracked. This now returns -EEXIST
instead of BUG_ON().
A second call to bind a per-domain or global VIRQ is not expected, but
make it non-fatal to avoid trying to look up the irq, since we don't
know which per_cpu(virq_to_irq) it will be in. |
| In the Linux kernel, the following vulnerability has been resolved:
xsk: Harden userspace-supplied xdp_desc validation
Turned out certain clearly invalid values passed in xdp_desc from
userspace can pass xp_{,un}aligned_validate_desc() and then lead
to UBs or just invalid frames to be queued for xmit.
desc->len close to ``U32_MAX`` with a non-zero pool->tx_metadata_len
can cause positive integer overflow and wraparound, the same way low
enough desc->addr with a non-zero pool->tx_metadata_len can cause
negative integer overflow. Both scenarios can then pass the
validation successfully.
This doesn't happen with valid XSk applications, but can be used
to perform attacks.
Always promote desc->len to ``u64`` first to exclude positive
overflows of it. Use explicit check_{add,sub}_overflow() when
validating desc->addr (which is ``u64`` already).
bloat-o-meter reports a little growth of the code size:
add/remove: 0/0 grow/shrink: 2/1 up/down: 60/-16 (44)
Function old new delta
xskq_cons_peek_desc 299 330 +31
xsk_tx_peek_release_desc_batch 973 1002 +29
xsk_generic_xmit 3148 3132 -16
but hopefully this doesn't hurt the performance much. |
| In the Linux kernel, the following vulnerability has been resolved:
ipv6: use RCU in ip6_output()
Use RCU in ip6_output() in order to use dst_dev_rcu() to prevent
possible UAF.
We can remove rcu_read_lock()/rcu_read_unlock() pairs
from ip6_finish_output2(). |
| In the Linux kernel, the following vulnerability has been resolved:
EDAC/i10nm: Skip DIMM enumeration on a disabled memory controller
When loading the i10nm_edac driver on some Intel Granite Rapids servers,
a call trace may appear as follows:
UBSAN: shift-out-of-bounds in drivers/edac/skx_common.c:453:16
shift exponent -66 is negative
...
__ubsan_handle_shift_out_of_bounds+0x1e3/0x390
skx_get_dimm_info.cold+0x47/0xd40 [skx_edac_common]
i10nm_get_dimm_config+0x23e/0x390 [i10nm_edac]
skx_register_mci+0x159/0x220 [skx_edac_common]
i10nm_init+0xcb0/0x1ff0 [i10nm_edac]
...
This occurs because some BIOS may disable a memory controller if there
aren't any memory DIMMs populated on this memory controller. The DIMMMTR
register of this disabled memory controller contains the invalid value
~0, resulting in the call trace above.
Fix this call trace by skipping DIMM enumeration on a disabled memory
controller. |
| In the Linux kernel, the following vulnerability has been resolved:
PM / devfreq: mtk-cci: Fix potential error pointer dereference in probe()
The drv->sram_reg pointer could be set to ERR_PTR(-EPROBE_DEFER) which
would lead to a error pointer dereference. Use IS_ERR_OR_NULL() to check
that the pointer is valid. |
| In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: debugfs: Fix legacy mode page table dump logic
In legacy mode, SSPTPTR is ignored if TT is not 00b or 01b. SSPTPTR
maybe uninitialized or zero in that case and may cause oops like:
Oops: general protection fault, probably for non-canonical address
0xf00087d3f000f000: 0000 [#1] SMP NOPTI
CPU: 2 UID: 0 PID: 786 Comm: cat Not tainted 6.16.0 #191 PREEMPT(voluntary)
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.17.0-5.fc42 04/01/2014
RIP: 0010:pgtable_walk_level+0x98/0x150
RSP: 0018:ffffc90000f279c0 EFLAGS: 00010206
RAX: 0000000040000000 RBX: ffffc90000f27ab0 RCX: 000000000000001e
RDX: 0000000000000003 RSI: f00087d3f000f000 RDI: f00087d3f0010000
RBP: ffffc90000f27a00 R08: ffffc90000f27a98 R09: 0000000000000002
R10: 0000000000000000 R11: 0000000000000000 R12: f00087d3f000f000
R13: 0000000000000000 R14: 0000000040000000 R15: ffffc90000f27a98
FS: 0000764566dcb740(0000) GS:ffff8881f812c000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 0000764566d44000 CR3: 0000000109d81003 CR4: 0000000000772ef0
PKRU: 55555554
Call Trace:
<TASK>
pgtable_walk_level+0x88/0x150
domain_translation_struct_show.isra.0+0x2d9/0x300
dev_domain_translation_struct_show+0x20/0x40
seq_read_iter+0x12d/0x490
...
Avoid walking the page table if TT is not 00b or 01b. |
| In the Linux kernel, the following vulnerability has been resolved:
ASoC: Intel: bytcr_rt5640: Fix invalid quirk input mapping
When an invalid value is passed via quirk option, currently
bytcr_rt5640 driver only shows an error message but leaves as is.
This may lead to unepxected results like OOB access.
This patch corrects the input mapping to the certain default value if
an invalid value is passed. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: hugetlb: avoid soft lockup when mprotect to large memory area
When calling mprotect() to a large hugetlb memory area in our customer's
workload (~300GB hugetlb memory), soft lockup was observed:
watchdog: BUG: soft lockup - CPU#98 stuck for 23s! [t2_new_sysv:126916]
CPU: 98 PID: 126916 Comm: t2_new_sysv Kdump: loaded Not tainted 6.17-rc7
Hardware name: GIGACOMPUTING R2A3-T40-AAV1/Jefferson CIO, BIOS 5.4.4.1 07/15/2025
pstate: 20400009 (nzCv daif +PAN -UAO -TCO -DIT -SSBS BTYPE=--)
pc : mte_clear_page_tags+0x14/0x24
lr : mte_sync_tags+0x1c0/0x240
sp : ffff80003150bb80
x29: ffff80003150bb80 x28: ffff00739e9705a8 x27: 0000ffd2d6a00000
x26: 0000ff8e4bc00000 x25: 00e80046cde00f45 x24: 0000000000022458
x23: 0000000000000000 x22: 0000000000000004 x21: 000000011b380000
x20: ffff000000000000 x19: 000000011b379f40 x18: 0000000000000000
x17: 0000000000000000 x16: 0000000000000000 x15: 0000000000000000
x14: 0000000000000000 x13: 0000000000000000 x12: 0000000000000000
x11: 0000000000000000 x10: 0000000000000000 x9 : ffffc875e0aa5e2c
x8 : 0000000000000000 x7 : 0000000000000000 x6 : 0000000000000000
x5 : fffffc01ce7a5c00 x4 : 00000000046cde00 x3 : fffffc0000000000
x2 : 0000000000000004 x1 : 0000000000000040 x0 : ffff0046cde7c000
Call trace:
mte_clear_page_tags+0x14/0x24
set_huge_pte_at+0x25c/0x280
hugetlb_change_protection+0x220/0x430
change_protection+0x5c/0x8c
mprotect_fixup+0x10c/0x294
do_mprotect_pkey.constprop.0+0x2e0/0x3d4
__arm64_sys_mprotect+0x24/0x44
invoke_syscall+0x50/0x160
el0_svc_common+0x48/0x144
do_el0_svc+0x30/0xe0
el0_svc+0x30/0xf0
el0t_64_sync_handler+0xc4/0x148
el0t_64_sync+0x1a4/0x1a8
Soft lockup is not triggered with THP or base page because there is
cond_resched() called for each PMD size.
Although the soft lockup was triggered by MTE, it should be not MTE
specific. The other processing which takes long time in the loop may
trigger soft lockup too.
So add cond_resched() for hugetlb to avoid soft lockup. |
| In the Linux kernel, the following vulnerability has been resolved:
drm/msm: Fix bootup splat with separate_gpu_drm modparam
The drm_gem_for_each_gpuvm_bo() call from lookup_vma() accesses
drm_gem_obj.gpuva.list, which is not initialized when the drm driver
does not support DRIVER_GEM_GPUVA feature. Enable it for msm_kms
drm driver to fix the splat seen when msm.separate_gpu_drm=1 modparam
is set:
[ 9.506020] Unable to handle kernel paging request at virtual address fffffffffffffff0
[ 9.523160] Mem abort info:
[ 9.523161] ESR = 0x0000000096000006
[ 9.523163] EC = 0x25: DABT (current EL), IL = 32 bits
[ 9.523165] SET = 0, FnV = 0
[ 9.523166] EA = 0, S1PTW = 0
[ 9.523167] FSC = 0x06: level 2 translation fault
[ 9.523169] Data abort info:
[ 9.523170] ISV = 0, ISS = 0x00000006, ISS2 = 0x00000000
[ 9.523171] CM = 0, WnR = 0, TnD = 0, TagAccess = 0
[ 9.523172] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0
[ 9.523174] swapper pgtable: 4k pages, 48-bit VAs, pgdp=0000000ad370f000
[ 9.523176] [fffffffffffffff0] pgd=0000000000000000, p4d=0000000ad4787403, pud=0000000ad4788403, pmd=0000000000000000
[ 9.523184] Internal error: Oops: 0000000096000006 [#1] SMP
[ 9.592968] CPU: 9 UID: 0 PID: 448 Comm: (udev-worker) Not tainted 6.17.0-rc4-assorted-fix-00005-g0e9bb53a2282-dirty #3 PREEMPT
[ 9.592970] Hardware name: Qualcomm CRD, BIOS 6.0.240718.BOOT.MXF.2.4-00515-HAMOA-1 07/18/2024
[ 9.592971] pstate: a1400005 (NzCv daif +PAN -UAO -TCO +DIT -SSBS BTYPE=--)
[ 9.592973] pc : lookup_vma+0x28/0xe0 [msm]
[ 9.592996] lr : get_vma_locked+0x2c/0x128 [msm]
[ 9.763632] sp : ffff800082dab460
[ 9.763666] Call trace:
[ 9.763668] lookup_vma+0x28/0xe0 [msm] (P)
[ 9.763688] get_vma_locked+0x2c/0x128 [msm]
[ 9.763706] msm_gem_get_and_pin_iova_range+0x68/0x11c [msm]
[ 9.763723] msm_gem_get_and_pin_iova+0x18/0x24 [msm]
[ 9.763740] msm_fbdev_driver_fbdev_probe+0xd0/0x258 [msm]
[ 9.763760] __drm_fb_helper_initial_config_and_unlock+0x288/0x528 [drm_kms_helper]
[ 9.763771] drm_fb_helper_initial_config+0x44/0x54 [drm_kms_helper]
[ 9.763779] drm_fbdev_client_hotplug+0x84/0xd4 [drm_client_lib]
[ 9.763782] drm_client_register+0x58/0x9c [drm]
[ 9.763806] drm_fbdev_client_setup+0xe8/0xcf0 [drm_client_lib]
[ 9.763809] drm_client_setup+0xb4/0xd8 [drm_client_lib]
[ 9.763811] msm_drm_kms_post_init+0x2c/0x3c [msm]
[ 9.763830] msm_drm_init+0x1a8/0x22c [msm]
[ 9.763848] msm_drm_bind+0x30/0x3c [msm]
[ 9.919273] try_to_bring_up_aggregate_device+0x168/0x1d4
[ 9.919283] __component_add+0xa4/0x170
[ 9.919286] component_add+0x14/0x20
[ 9.919288] msm_dp_display_probe_tail+0x4c/0xac [msm]
[ 9.919315] msm_dp_auxbus_done_probe+0x14/0x20 [msm]
[ 9.919335] dp_aux_ep_probe+0x4c/0xf0 [drm_dp_aux_bus]
[ 9.919341] really_probe+0xbc/0x298
[ 9.919345] __driver_probe_device+0x78/0x12c
[ 9.919348] driver_probe_device+0x40/0x160
[ 9.919350] __driver_attach+0x94/0x19c
[ 9.919353] bus_for_each_dev+0x74/0xd4
[ 9.919355] driver_attach+0x24/0x30
[ 9.919358] bus_add_driver+0xe4/0x208
[ 9.919360] driver_register+0x60/0x128
[ 9.919363] __dp_aux_dp_driver_register+0x24/0x30 [drm_dp_aux_bus]
[ 9.919365] atana33xc20_init+0x20/0x1000 [panel_samsung_atna33xc20]
[ 9.919370] do_one_initcall+0x6c/0x1b0
[ 9.919374] do_init_module+0x58/0x234
[ 9.919377] load_module+0x19cc/0x1bd4
[ 9.919380] init_module_from_file+0x84/0xc4
[ 9.919382] __arm64_sys_finit_module+0x1b8/0x2cc
[ 9.919384] invoke_syscall+0x48/0x110
[ 9.919389] el0_svc_common.constprop.0+0xc8/0xe8
[ 9.919393] do_el0_svc+0x20/0x2c
[ 9.919396] el0_svc+0x34/0xf0
[ 9.919401] el0t_64_sync_handler+0xa0/0xe4
[ 9.919403] el0t_64_sync+0x198/0x19c
[ 9.919407] Code: eb0000bf 54000480 d100a003 aa0303e2 (f8418c44)
[ 9.919410] ---[ end trace 0000000000000000 ]---
Patchwork: https://patchwork.freedesktop.org/pa
---truncated--- |