CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Fix UAF via mismatching bpf_prog/attachment RCU flavors
Uprobes always use bpf_prog_run_array_uprobe() under tasks-trace-RCU
protection. But it is possible to attach a non-sleepable BPF program to a
uprobe, and non-sleepable BPF programs are freed via normal RCU (see
__bpf_prog_put_noref()). This leads to UAF of the bpf_prog because a normal
RCU grace period does not imply a tasks-trace-RCU grace period.
Fix it by explicitly waiting for a tasks-trace-RCU grace period after
removing the attachment of a bpf_prog to a perf_event. |
In the Linux kernel, the following vulnerability has been resolved:
blk-cgroup: Fix UAF in blkcg_unpin_online()
blkcg_unpin_online() walks up the blkcg hierarchy putting the online pin. To
walk up, it uses blkcg_parent(blkcg) but it was calling that after
blkcg_destroy_blkgs(blkcg) which could free the blkcg, leading to the
following UAF:
==================================================================
BUG: KASAN: slab-use-after-free in blkcg_unpin_online+0x15a/0x270
Read of size 8 at addr ffff8881057678c0 by task kworker/9:1/117
CPU: 9 UID: 0 PID: 117 Comm: kworker/9:1 Not tainted 6.13.0-rc1-work-00182-gb8f52214c61a-dirty #48
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS unknown 02/02/2022
Workqueue: cgwb_release cgwb_release_workfn
Call Trace:
<TASK>
dump_stack_lvl+0x27/0x80
print_report+0x151/0x710
kasan_report+0xc0/0x100
blkcg_unpin_online+0x15a/0x270
cgwb_release_workfn+0x194/0x480
process_scheduled_works+0x71b/0xe20
worker_thread+0x82a/0xbd0
kthread+0x242/0x2c0
ret_from_fork+0x33/0x70
ret_from_fork_asm+0x1a/0x30
</TASK>
...
Freed by task 1944:
kasan_save_track+0x2b/0x70
kasan_save_free_info+0x3c/0x50
__kasan_slab_free+0x33/0x50
kfree+0x10c/0x330
css_free_rwork_fn+0xe6/0xb30
process_scheduled_works+0x71b/0xe20
worker_thread+0x82a/0xbd0
kthread+0x242/0x2c0
ret_from_fork+0x33/0x70
ret_from_fork_asm+0x1a/0x30
Note that the UAF is not easy to trigger as the free path is indirected
behind a couple RCU grace periods and a work item execution. I could only
trigger it with artifical msleep() injected in blkcg_unpin_online().
Fix it by reading the parent pointer before destroying the blkcg's blkg's. |
In the Linux kernel, the following vulnerability has been resolved:
iommu/vt-d: Remove cache tags before disabling ATS
The current implementation removes cache tags after disabling ATS,
leading to potential memory leaks and kernel crashes. Specifically,
CACHE_TAG_DEVTLB type cache tags may still remain in the list even
after the domain is freed, causing a use-after-free condition.
This issue really shows up when multiple VFs from different PFs
passed through to a single user-space process via vfio-pci. In such
cases, the kernel may crash with kernel messages like:
BUG: kernel NULL pointer dereference, address: 0000000000000014
PGD 19036a067 P4D 1940a3067 PUD 136c9b067 PMD 0
Oops: Oops: 0000 [#1] PREEMPT SMP NOPTI
CPU: 74 UID: 0 PID: 3183 Comm: testCli Not tainted 6.11.9 #2
RIP: 0010:cache_tag_flush_range+0x9b/0x250
Call Trace:
<TASK>
? __die+0x1f/0x60
? page_fault_oops+0x163/0x590
? exc_page_fault+0x72/0x190
? asm_exc_page_fault+0x22/0x30
? cache_tag_flush_range+0x9b/0x250
? cache_tag_flush_range+0x5d/0x250
intel_iommu_tlb_sync+0x29/0x40
intel_iommu_unmap_pages+0xfe/0x160
__iommu_unmap+0xd8/0x1a0
vfio_unmap_unpin+0x182/0x340 [vfio_iommu_type1]
vfio_remove_dma+0x2a/0xb0 [vfio_iommu_type1]
vfio_iommu_type1_ioctl+0xafa/0x18e0 [vfio_iommu_type1]
Move cache_tag_unassign_domain() before iommu_disable_pci_caps() to fix
it. |
In the Linux kernel, the following vulnerability has been resolved:
bpf, sockmap: Fix race between element replace and close()
Element replace (with a socket different from the one stored) may race
with socket's close() link popping & unlinking. __sock_map_delete()
unconditionally unrefs the (wrong) element:
// set map[0] = s0
map_update_elem(map, 0, s0)
// drop fd of s0
close(s0)
sock_map_close()
lock_sock(sk) (s0!)
sock_map_remove_links(sk)
link = sk_psock_link_pop()
sock_map_unlink(sk, link)
sock_map_delete_from_link
// replace map[0] with s1
map_update_elem(map, 0, s1)
sock_map_update_elem
(s1!) lock_sock(sk)
sock_map_update_common
psock = sk_psock(sk)
spin_lock(&stab->lock)
osk = stab->sks[idx]
sock_map_add_link(..., &stab->sks[idx])
sock_map_unref(osk, &stab->sks[idx])
psock = sk_psock(osk)
sk_psock_put(sk, psock)
if (refcount_dec_and_test(&psock))
sk_psock_drop(sk, psock)
spin_unlock(&stab->lock)
unlock_sock(sk)
__sock_map_delete
spin_lock(&stab->lock)
sk = *psk // s1 replaced s0; sk == s1
if (!sk_test || sk_test == sk) // sk_test (s0) != sk (s1); no branch
sk = xchg(psk, NULL)
if (sk)
sock_map_unref(sk, psk) // unref s1; sks[idx] will dangle
psock = sk_psock(sk)
sk_psock_put(sk, psock)
if (refcount_dec_and_test())
sk_psock_drop(sk, psock)
spin_unlock(&stab->lock)
release_sock(sk)
Then close(map) enqueues bpf_map_free_deferred, which finally calls
sock_map_free(). This results in some refcount_t warnings along with
a KASAN splat [1].
Fix __sock_map_delete(), do not allow sock_map_unref() on elements that
may have been replaced.
[1]:
BUG: KASAN: slab-use-after-free in sock_map_free+0x10e/0x330
Write of size 4 at addr ffff88811f5b9100 by task kworker/u64:12/1063
CPU: 14 UID: 0 PID: 1063 Comm: kworker/u64:12 Not tainted 6.12.0+ #125
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS Arch Linux 1.16.3-1-1 04/01/2014
Workqueue: events_unbound bpf_map_free_deferred
Call Trace:
<TASK>
dump_stack_lvl+0x68/0x90
print_report+0x174/0x4f6
kasan_report+0xb9/0x190
kasan_check_range+0x10f/0x1e0
sock_map_free+0x10e/0x330
bpf_map_free_deferred+0x173/0x320
process_one_work+0x846/0x1420
worker_thread+0x5b3/0xf80
kthread+0x29e/0x360
ret_from_fork+0x2d/0x70
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 1202:
kasan_save_stack+0x1e/0x40
kasan_save_track+0x10/0x30
__kasan_slab_alloc+0x85/0x90
kmem_cache_alloc_noprof+0x131/0x450
sk_prot_alloc+0x5b/0x220
sk_alloc+0x2c/0x870
unix_create1+0x88/0x8a0
unix_create+0xc5/0x180
__sock_create+0x241/0x650
__sys_socketpair+0x1ce/0x420
__x64_sys_socketpair+0x92/0x100
do_syscall_64+0x93/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 46:
kasan_save_stack+0x1e/0x40
kasan_save_track+0x10/0x30
kasan_save_free_info+0x37/0x60
__kasan_slab_free+0x4b/0x70
kmem_cache_free+0x1a1/0x590
__sk_destruct+0x388/0x5a0
sk_psock_destroy+0x73e/0xa50
process_one_work+0x846/0x1420
worker_thread+0x5b3/0xf80
kthread+0x29e/0x360
ret_from_fork+0x2d/0x70
ret_from_fork_asm+0x1a/0x30
The bu
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: btmtk: avoid UAF in btmtk_process_coredump
hci_devcd_append may lead to the release of the skb, so it cannot be
accessed once it is called.
==================================================================
BUG: KASAN: slab-use-after-free in btmtk_process_coredump+0x2a7/0x2d0 [btmtk]
Read of size 4 at addr ffff888033cfabb0 by task kworker/0:3/82
CPU: 0 PID: 82 Comm: kworker/0:3 Tainted: G U 6.6.40-lockdep-03464-g1d8b4eb3060e #1 b0b3c1cc0c842735643fb411799d97921d1f688c
Hardware name: Google Yaviks_Ufs/Yaviks_Ufs, BIOS Google_Yaviks_Ufs.15217.552.0 05/07/2024
Workqueue: events btusb_rx_work [btusb]
Call Trace:
<TASK>
dump_stack_lvl+0xfd/0x150
print_report+0x131/0x780
kasan_report+0x177/0x1c0
btmtk_process_coredump+0x2a7/0x2d0 [btmtk 03edd567dd71a65958807c95a65db31d433e1d01]
btusb_recv_acl_mtk+0x11c/0x1a0 [btusb 675430d1e87c4f24d0c1f80efe600757a0f32bec]
btusb_rx_work+0x9e/0xe0 [btusb 675430d1e87c4f24d0c1f80efe600757a0f32bec]
worker_thread+0xe44/0x2cc0
kthread+0x2ff/0x3a0
ret_from_fork+0x51/0x80
ret_from_fork_asm+0x1b/0x30
</TASK>
Allocated by task 82:
stack_trace_save+0xdc/0x190
kasan_set_track+0x4e/0x80
__kasan_slab_alloc+0x4e/0x60
kmem_cache_alloc+0x19f/0x360
skb_clone+0x132/0xf70
btusb_recv_acl_mtk+0x104/0x1a0 [btusb]
btusb_rx_work+0x9e/0xe0 [btusb]
worker_thread+0xe44/0x2cc0
kthread+0x2ff/0x3a0
ret_from_fork+0x51/0x80
ret_from_fork_asm+0x1b/0x30
Freed by task 1733:
stack_trace_save+0xdc/0x190
kasan_set_track+0x4e/0x80
kasan_save_free_info+0x28/0xb0
____kasan_slab_free+0xfd/0x170
kmem_cache_free+0x183/0x3f0
hci_devcd_rx+0x91a/0x2060 [bluetooth]
worker_thread+0xe44/0x2cc0
kthread+0x2ff/0x3a0
ret_from_fork+0x51/0x80
ret_from_fork_asm+0x1b/0x30
The buggy address belongs to the object at ffff888033cfab40
which belongs to the cache skbuff_head_cache of size 232
The buggy address is located 112 bytes inside of
freed 232-byte region [ffff888033cfab40, ffff888033cfac28)
The buggy address belongs to the physical page:
page:00000000a174ba93 refcount:1 mapcount:0 mapping:0000000000000000 index:0x0 pfn:0x33cfa
head:00000000a174ba93 order:1 entire_mapcount:0 nr_pages_mapped:0 pincount:0
anon flags: 0x4000000000000840(slab|head|zone=1)
page_type: 0xffffffff()
raw: 4000000000000840 ffff888100848a00 0000000000000000 0000000000000001
raw: 0000000000000000 0000000080190019 00000001ffffffff 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888033cfaa80: fb fb fb fb fb fb fb fb fb fb fb fb fb fc fc fc
ffff888033cfab00: fc fc fc fc fc fc fc fc fa fb fb fb fb fb fb fb
>ffff888033cfab80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff888033cfac00: fb fb fb fb fb fc fc fc fc fc fc fc fc fc fc fc
ffff888033cfac80: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
==================================================================
Check if we need to call hci_devcd_complete before calling
hci_devcd_append. That requires that we check data->cd_info.cnt >=
MTK_COREDUMP_NUM instead of data->cd_info.cnt > MTK_COREDUMP_NUM, as we
increment data->cd_info.cnt only once the call to hci_devcd_append
succeeds. |
In the Linux kernel, the following vulnerability has been resolved:
drm/xe/reg_sr: Remove register pool
That pool implementation doesn't really work: if the krealloc happens to
move the memory and return another address, the entries in the xarray
become invalid, leading to use-after-free later:
BUG: KASAN: slab-use-after-free in xe_reg_sr_apply_mmio+0x570/0x760 [xe]
Read of size 4 at addr ffff8881244b2590 by task modprobe/2753
Allocated by task 2753:
kasan_save_stack+0x39/0x70
kasan_save_track+0x14/0x40
kasan_save_alloc_info+0x37/0x60
__kasan_kmalloc+0xc3/0xd0
__kmalloc_node_track_caller_noprof+0x200/0x6d0
krealloc_noprof+0x229/0x380
Simplify the code to fix the bug. A better pooling strategy may be added
back later if needed.
(cherry picked from commit e5283bd4dfecbd3335f43b62a68e24dae23f59e4) |
In the Linux kernel, the following vulnerability has been resolved:
net/smc: fix LGR and link use-after-free issue
We encountered a LGR/link use-after-free issue, which manifested as
the LGR/link refcnt reaching 0 early and entering the clear process,
making resource access unsafe.
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 14 PID: 107447 at lib/refcount.c:25 refcount_warn_saturate+0x9c/0x140
Workqueue: events smc_lgr_terminate_work [smc]
Call trace:
refcount_warn_saturate+0x9c/0x140
__smc_lgr_terminate.part.45+0x2a8/0x370 [smc]
smc_lgr_terminate_work+0x28/0x30 [smc]
process_one_work+0x1b8/0x420
worker_thread+0x158/0x510
kthread+0x114/0x118
or
refcount_t: underflow; use-after-free.
WARNING: CPU: 6 PID: 93140 at lib/refcount.c:28 refcount_warn_saturate+0xf0/0x140
Workqueue: smc_hs_wq smc_listen_work [smc]
Call trace:
refcount_warn_saturate+0xf0/0x140
smcr_link_put+0x1cc/0x1d8 [smc]
smc_conn_free+0x110/0x1b0 [smc]
smc_conn_abort+0x50/0x60 [smc]
smc_listen_find_device+0x75c/0x790 [smc]
smc_listen_work+0x368/0x8a0 [smc]
process_one_work+0x1b8/0x420
worker_thread+0x158/0x510
kthread+0x114/0x118
It is caused by repeated release of LGR/link refcnt. One suspect is that
smc_conn_free() is called repeatedly because some smc_conn_free() from
server listening path are not protected by sock lock.
e.g.
Calls under socklock | smc_listen_work
-------------------------------------------------------
lock_sock(sk) | smc_conn_abort
smc_conn_free | \- smc_conn_free
\- smcr_link_put | \- smcr_link_put (duplicated)
release_sock(sk)
So here add sock lock protection in smc_listen_work() path, making it
exclusive with other connection operations. |
In the Linux kernel, the following vulnerability has been resolved:
net: avoid potential UAF in default_operstate()
syzbot reported an UAF in default_operstate() [1]
Issue is a race between device and netns dismantles.
After calling __rtnl_unlock() from netdev_run_todo(),
we can not assume the netns of each device is still alive.
Make sure the device is not in NETREG_UNREGISTERED state,
and add an ASSERT_RTNL() before the call to
__dev_get_by_index().
We might move this ASSERT_RTNL() in __dev_get_by_index()
in the future.
[1]
BUG: KASAN: slab-use-after-free in __dev_get_by_index+0x5d/0x110 net/core/dev.c:852
Read of size 8 at addr ffff888043eba1b0 by task syz.0.0/5339
CPU: 0 UID: 0 PID: 5339 Comm: syz.0.0 Not tainted 6.12.0-syzkaller-10296-gaaf20f870da0 #0
Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2~bpo12+1 04/01/2014
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x241/0x360 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:378 [inline]
print_report+0x169/0x550 mm/kasan/report.c:489
kasan_report+0x143/0x180 mm/kasan/report.c:602
__dev_get_by_index+0x5d/0x110 net/core/dev.c:852
default_operstate net/core/link_watch.c:51 [inline]
rfc2863_policy+0x224/0x300 net/core/link_watch.c:67
linkwatch_do_dev+0x3e/0x170 net/core/link_watch.c:170
netdev_run_todo+0x461/0x1000 net/core/dev.c:10894
rtnl_unlock net/core/rtnetlink.c:152 [inline]
rtnl_net_unlock include/linux/rtnetlink.h:133 [inline]
rtnl_dellink+0x760/0x8d0 net/core/rtnetlink.c:3520
rtnetlink_rcv_msg+0x791/0xcf0 net/core/rtnetlink.c:6911
netlink_rcv_skb+0x1e3/0x430 net/netlink/af_netlink.c:2541
netlink_unicast_kernel net/netlink/af_netlink.c:1321 [inline]
netlink_unicast+0x7f6/0x990 net/netlink/af_netlink.c:1347
netlink_sendmsg+0x8e4/0xcb0 net/netlink/af_netlink.c:1891
sock_sendmsg_nosec net/socket.c:711 [inline]
__sock_sendmsg+0x221/0x270 net/socket.c:726
____sys_sendmsg+0x52a/0x7e0 net/socket.c:2583
___sys_sendmsg net/socket.c:2637 [inline]
__sys_sendmsg+0x269/0x350 net/socket.c:2669
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
RIP: 0033:0x7f2a3cb80809
Code: ff ff c3 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 40 00 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 c7 c1 a8 ff ff ff f7 d8 64 89 01 48
RSP: 002b:00007f2a3d9cd058 EFLAGS: 00000246 ORIG_RAX: 000000000000002e
RAX: ffffffffffffffda RBX: 00007f2a3cd45fa0 RCX: 00007f2a3cb80809
RDX: 0000000000000000 RSI: 0000000020000000 RDI: 0000000000000008
RBP: 00007f2a3cbf393e R08: 0000000000000000 R09: 0000000000000000
R10: 0000000000000000 R11: 0000000000000246 R12: 0000000000000000
R13: 0000000000000000 R14: 00007f2a3cd45fa0 R15: 00007ffd03bc65c8
</TASK>
Allocated by task 5339:
kasan_save_stack mm/kasan/common.c:47 [inline]
kasan_save_track+0x3f/0x80 mm/kasan/common.c:68
poison_kmalloc_redzone mm/kasan/common.c:377 [inline]
__kasan_kmalloc+0x98/0xb0 mm/kasan/common.c:394
kasan_kmalloc include/linux/kasan.h:260 [inline]
__kmalloc_cache_noprof+0x243/0x390 mm/slub.c:4314
kmalloc_noprof include/linux/slab.h:901 [inline]
kmalloc_array_noprof include/linux/slab.h:945 [inline]
netdev_create_hash net/core/dev.c:11870 [inline]
netdev_init+0x10c/0x250 net/core/dev.c:11890
ops_init+0x31e/0x590 net/core/net_namespace.c:138
setup_net+0x287/0x9e0 net/core/net_namespace.c:362
copy_net_ns+0x33f/0x570 net/core/net_namespace.c:500
create_new_namespaces+0x425/0x7b0 kernel/nsproxy.c:110
unshare_nsproxy_namespaces+0x124/0x180 kernel/nsproxy.c:228
ksys_unshare+0x57d/0xa70 kernel/fork.c:3314
__do_sys_unshare kernel/fork.c:3385 [inline]
__se_sys_unshare kernel/fork.c:3383 [inline]
__x64_sys_unshare+0x38/0x40 kernel/fork.c:3383
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x8
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: fix potential out-of-bounds memory access in nilfs_find_entry()
Syzbot reported that when searching for records in a directory where the
inode's i_size is corrupted and has a large value, memory access outside
the folio/page range may occur, or a use-after-free bug may be detected if
KASAN is enabled.
This is because nilfs_last_byte(), which is called by nilfs_find_entry()
and others to calculate the number of valid bytes of directory data in a
page from i_size and the page index, loses the upper 32 bits of the 64-bit
size information due to an inappropriate type of local variable to which
the i_size value is assigned.
This caused a large byte offset value due to underflow in the end address
calculation in the calling nilfs_find_entry(), resulting in memory access
that exceeds the folio/page size.
Fix this issue by changing the type of the local variable causing the bit
loss from "unsigned int" to "u64". The return value of nilfs_last_byte()
is also of type "unsigned int", but it is truncated so as not to exceed
PAGE_SIZE and no bit loss occurs, so no change is required. |
In the Linux kernel, the following vulnerability has been resolved:
af_packet: avoid erroring out after sock_init_data() in packet_create()
After sock_init_data() the allocated sk object is attached to the provided
sock object. On error, packet_create() frees the sk object leaving the
dangling pointer in the sock object on return. Some other code may try
to use this pointer and cause use-after-free. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: L2CAP: do not leave dangling sk pointer on error in l2cap_sock_create()
bt_sock_alloc() allocates the sk object and attaches it to the provided
sock object. On error l2cap_sock_alloc() frees the sk object, but the
dangling pointer is still attached to the sock object, which may create
use-after-free in other code. |
In the Linux kernel, the following vulnerability has been resolved:
Bluetooth: RFCOMM: avoid leaving dangling sk pointer in rfcomm_sock_alloc()
bt_sock_alloc() attaches allocated sk object to the provided sock object.
If rfcomm_dlc_alloc() fails, we release the sk object, but leave the
dangling pointer in the sock object, which may cause use-after-free.
Fix this by swapping calls to bt_sock_alloc() and rfcomm_dlc_alloc(). |
In the Linux kernel, the following vulnerability has been resolved:
net: af_can: do not leave a dangling sk pointer in can_create()
On error can_create() frees the allocated sk object, but sock_init_data()
has already attached it to the provided sock object. This will leave a
dangling sk pointer in the sock object and may cause use-after-free later. |
In the Linux kernel, the following vulnerability has been resolved:
net: ieee802154: do not leave a dangling sk pointer in ieee802154_create()
sock_init_data() attaches the allocated sk object to the provided sock
object. If ieee802154_create() fails later, the allocated sk object is
freed, but the dangling pointer remains in the provided sock object, which
may allow use-after-free.
Clear the sk pointer in the sock object on error. |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: fix use-after-free in btrfs_encoded_read_endio()
Shinichiro reported the following use-after free that sometimes is
happening in our CI system when running fstests' btrfs/284 on a TCMU
runner device:
BUG: KASAN: slab-use-after-free in lock_release+0x708/0x780
Read of size 8 at addr ffff888106a83f18 by task kworker/u80:6/219
CPU: 8 UID: 0 PID: 219 Comm: kworker/u80:6 Not tainted 6.12.0-rc6-kts+ #15
Hardware name: Supermicro Super Server/X11SPi-TF, BIOS 3.3 02/21/2020
Workqueue: btrfs-endio btrfs_end_bio_work [btrfs]
Call Trace:
<TASK>
dump_stack_lvl+0x6e/0xa0
? lock_release+0x708/0x780
print_report+0x174/0x505
? lock_release+0x708/0x780
? __virt_addr_valid+0x224/0x410
? lock_release+0x708/0x780
kasan_report+0xda/0x1b0
? lock_release+0x708/0x780
? __wake_up+0x44/0x60
lock_release+0x708/0x780
? __pfx_lock_release+0x10/0x10
? __pfx_do_raw_spin_lock+0x10/0x10
? lock_is_held_type+0x9a/0x110
_raw_spin_unlock_irqrestore+0x1f/0x60
__wake_up+0x44/0x60
btrfs_encoded_read_endio+0x14b/0x190 [btrfs]
btrfs_check_read_bio+0x8d9/0x1360 [btrfs]
? lock_release+0x1b0/0x780
? trace_lock_acquire+0x12f/0x1a0
? __pfx_btrfs_check_read_bio+0x10/0x10 [btrfs]
? process_one_work+0x7e3/0x1460
? lock_acquire+0x31/0xc0
? process_one_work+0x7e3/0x1460
process_one_work+0x85c/0x1460
? __pfx_process_one_work+0x10/0x10
? assign_work+0x16c/0x240
worker_thread+0x5e6/0xfc0
? __pfx_worker_thread+0x10/0x10
kthread+0x2c3/0x3a0
? __pfx_kthread+0x10/0x10
ret_from_fork+0x31/0x70
? __pfx_kthread+0x10/0x10
ret_from_fork_asm+0x1a/0x30
</TASK>
Allocated by task 3661:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
__kasan_kmalloc+0xaa/0xb0
btrfs_encoded_read_regular_fill_pages+0x16c/0x6d0 [btrfs]
send_extent_data+0xf0f/0x24a0 [btrfs]
process_extent+0x48a/0x1830 [btrfs]
changed_cb+0x178b/0x2ea0 [btrfs]
btrfs_ioctl_send+0x3bf9/0x5c20 [btrfs]
_btrfs_ioctl_send+0x117/0x330 [btrfs]
btrfs_ioctl+0x184a/0x60a0 [btrfs]
__x64_sys_ioctl+0x12e/0x1a0
do_syscall_64+0x95/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
Freed by task 3661:
kasan_save_stack+0x30/0x50
kasan_save_track+0x14/0x30
kasan_save_free_info+0x3b/0x70
__kasan_slab_free+0x4f/0x70
kfree+0x143/0x490
btrfs_encoded_read_regular_fill_pages+0x531/0x6d0 [btrfs]
send_extent_data+0xf0f/0x24a0 [btrfs]
process_extent+0x48a/0x1830 [btrfs]
changed_cb+0x178b/0x2ea0 [btrfs]
btrfs_ioctl_send+0x3bf9/0x5c20 [btrfs]
_btrfs_ioctl_send+0x117/0x330 [btrfs]
btrfs_ioctl+0x184a/0x60a0 [btrfs]
__x64_sys_ioctl+0x12e/0x1a0
do_syscall_64+0x95/0x180
entry_SYSCALL_64_after_hwframe+0x76/0x7e
The buggy address belongs to the object at ffff888106a83f00
which belongs to the cache kmalloc-rnd-07-96 of size 96
The buggy address is located 24 bytes inside of
freed 96-byte region [ffff888106a83f00, ffff888106a83f60)
The buggy address belongs to the physical page:
page: refcount:1 mapcount:0 mapping:0000000000000000 index:0xffff888106a83800 pfn:0x106a83
flags: 0x17ffffc0000000(node=0|zone=2|lastcpupid=0x1fffff)
page_type: f5(slab)
raw: 0017ffffc0000000 ffff888100053680 ffffea0004917200 0000000000000004
raw: ffff888106a83800 0000000080200019 00000001f5000000 0000000000000000
page dumped because: kasan: bad access detected
Memory state around the buggy address:
ffff888106a83e00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc
ffff888106a83e80: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc
>ffff888106a83f00: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc
^
ffff888106a83f80: fa fb fb fb fb fb fb fb fb fb fb fb fc fc fc fc
ffff888106a84000: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
==================================================================
Further analyzing the trace and
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
btrfs: ref-verify: fix use-after-free after invalid ref action
At btrfs_ref_tree_mod() after we successfully inserted the new ref entry
(local variable 'ref') into the respective block entry's rbtree (local
variable 'be'), if we find an unexpected action of BTRFS_DROP_DELAYED_REF,
we error out and free the ref entry without removing it from the block
entry's rbtree. Then in the error path of btrfs_ref_tree_mod() we call
btrfs_free_ref_cache(), which iterates over all block entries and then
calls free_block_entry() for each one, and there we will trigger a
use-after-free when we are called against the block entry to which we
added the freed ref entry to its rbtree, since the rbtree still points
to the block entry, as we didn't remove it from the rbtree before freeing
it in the error path at btrfs_ref_tree_mod(). Fix this by removing the
new ref entry from the rbtree before freeing it.
Syzbot report this with the following stack traces:
BTRFS error (device loop0 state EA): Ref action 2, root 5, ref_root 0, parent 8564736, owner 0, offset 0, num_refs 18446744073709551615
__btrfs_mod_ref+0x7dd/0xac0 fs/btrfs/extent-tree.c:2523
update_ref_for_cow+0x9cd/0x11f0 fs/btrfs/ctree.c:512
btrfs_force_cow_block+0x9f6/0x1da0 fs/btrfs/ctree.c:594
btrfs_cow_block+0x35e/0xa40 fs/btrfs/ctree.c:754
btrfs_search_slot+0xbdd/0x30d0 fs/btrfs/ctree.c:2116
btrfs_insert_empty_items+0x9c/0x1a0 fs/btrfs/ctree.c:4314
btrfs_insert_empty_item fs/btrfs/ctree.h:669 [inline]
btrfs_insert_orphan_item+0x1f1/0x320 fs/btrfs/orphan.c:23
btrfs_orphan_add+0x6d/0x1a0 fs/btrfs/inode.c:3482
btrfs_unlink+0x267/0x350 fs/btrfs/inode.c:4293
vfs_unlink+0x365/0x650 fs/namei.c:4469
do_unlinkat+0x4ae/0x830 fs/namei.c:4533
__do_sys_unlinkat fs/namei.c:4576 [inline]
__se_sys_unlinkat fs/namei.c:4569 [inline]
__x64_sys_unlinkat+0xcc/0xf0 fs/namei.c:4569
do_syscall_x64 arch/x86/entry/common.c:52 [inline]
do_syscall_64+0xf3/0x230 arch/x86/entry/common.c:83
entry_SYSCALL_64_after_hwframe+0x77/0x7f
BTRFS error (device loop0 state EA): Ref action 1, root 5, ref_root 5, parent 0, owner 260, offset 0, num_refs 1
__btrfs_mod_ref+0x76b/0xac0 fs/btrfs/extent-tree.c:2521
update_ref_for_cow+0x96a/0x11f0
btrfs_force_cow_block+0x9f6/0x1da0 fs/btrfs/ctree.c:594
btrfs_cow_block+0x35e/0xa40 fs/btrfs/ctree.c:754
btrfs_search_slot+0xbdd/0x30d0 fs/btrfs/ctree.c:2116
btrfs_lookup_inode+0xdc/0x480 fs/btrfs/inode-item.c:411
__btrfs_update_delayed_inode+0x1e7/0xb90 fs/btrfs/delayed-inode.c:1030
btrfs_update_delayed_inode fs/btrfs/delayed-inode.c:1114 [inline]
__btrfs_commit_inode_delayed_items+0x2318/0x24a0 fs/btrfs/delayed-inode.c:1137
__btrfs_run_delayed_items+0x213/0x490 fs/btrfs/delayed-inode.c:1171
btrfs_commit_transaction+0x8a8/0x3740 fs/btrfs/transaction.c:2313
prepare_to_relocate+0x3c4/0x4c0 fs/btrfs/relocation.c:3586
relocate_block_group+0x16c/0xd40 fs/btrfs/relocation.c:3611
btrfs_relocate_block_group+0x77d/0xd90 fs/btrfs/relocation.c:4081
btrfs_relocate_chunk+0x12c/0x3b0 fs/btrfs/volumes.c:3377
__btrfs_balance+0x1b0f/0x26b0 fs/btrfs/volumes.c:4161
btrfs_balance+0xbdc/0x10c0 fs/btrfs/volumes.c:4538
BTRFS error (device loop0 state EA): Ref action 2, root 5, ref_root 0, parent 8564736, owner 0, offset 0, num_refs 18446744073709551615
__btrfs_mod_ref+0x7dd/0xac0 fs/btrfs/extent-tree.c:2523
update_ref_for_cow+0x9cd/0x11f0 fs/btrfs/ctree.c:512
btrfs_force_cow_block+0x9f6/0x1da0 fs/btrfs/ctree.c:594
btrfs_cow_block+0x35e/0xa40 fs/btrfs/ctree.c:754
btrfs_search_slot+0xbdd/0x30d0 fs/btrfs/ctree.c:2116
btrfs_lookup_inode+0xdc/0x480 fs/btrfs/inode-item.c:411
__btrfs_update_delayed_inode+0x1e7/0xb90 fs/btrfs/delayed-inode.c:1030
btrfs_update_delayed_i
---truncated--- |
In the Linux kernel, the following vulnerability has been resolved:
nfsd: make sure exp active before svc_export_show
The function `e_show` was called with protection from RCU. This only
ensures that `exp` will not be freed. Therefore, the reference count for
`exp` can drop to zero, which will trigger a refcount use-after-free
warning when `exp_get` is called. To resolve this issue, use
`cache_get_rcu` to ensure that `exp` remains active.
------------[ cut here ]------------
refcount_t: addition on 0; use-after-free.
WARNING: CPU: 3 PID: 819 at lib/refcount.c:25
refcount_warn_saturate+0xb1/0x120
CPU: 3 UID: 0 PID: 819 Comm: cat Not tainted 6.12.0-rc3+ #1
Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS
1.16.1-2.fc37 04/01/2014
RIP: 0010:refcount_warn_saturate+0xb1/0x120
...
Call Trace:
<TASK>
e_show+0x20b/0x230 [nfsd]
seq_read_iter+0x589/0x770
seq_read+0x1e5/0x270
vfs_read+0x125/0x530
ksys_read+0xc1/0x160
do_syscall_64+0x5f/0x170
entry_SYSCALL_64_after_hwframe+0x76/0x7e |
In the Linux kernel, the following vulnerability has been resolved:
binder: fix node UAF in binder_add_freeze_work()
In binder_add_freeze_work() we iterate over the proc->nodes with the
proc->inner_lock held. However, this lock is temporarily dropped in
order to acquire the node->lock first (lock nesting order). This can
race with binder_node_release() and trigger a use-after-free:
==================================================================
BUG: KASAN: slab-use-after-free in _raw_spin_lock+0xe4/0x19c
Write of size 4 at addr ffff53c04c29dd04 by task freeze/640
CPU: 5 UID: 0 PID: 640 Comm: freeze Not tainted 6.11.0-07343-ga727812a8d45 #17
Hardware name: linux,dummy-virt (DT)
Call trace:
_raw_spin_lock+0xe4/0x19c
binder_add_freeze_work+0x148/0x478
binder_ioctl+0x1e70/0x25ac
__arm64_sys_ioctl+0x124/0x190
Allocated by task 637:
__kmalloc_cache_noprof+0x12c/0x27c
binder_new_node+0x50/0x700
binder_transaction+0x35ac/0x6f74
binder_thread_write+0xfb8/0x42a0
binder_ioctl+0x18f0/0x25ac
__arm64_sys_ioctl+0x124/0x190
Freed by task 637:
kfree+0xf0/0x330
binder_thread_read+0x1e88/0x3a68
binder_ioctl+0x16d8/0x25ac
__arm64_sys_ioctl+0x124/0x190
==================================================================
Fix the race by taking a temporary reference on the node before
releasing the proc->inner lock. This ensures the node remains alive
while in use. |
In the Linux kernel, the following vulnerability has been resolved:
binder: fix freeze UAF in binder_release_work()
When a binder reference is cleaned up, any freeze work queued in the
associated process should also be removed. Otherwise, the reference is
freed while its ref->freeze.work is still queued in proc->work leading
to a use-after-free issue as shown by the following KASAN report:
==================================================================
BUG: KASAN: slab-use-after-free in binder_release_work+0x398/0x3d0
Read of size 8 at addr ffff31600ee91488 by task kworker/5:1/211
CPU: 5 UID: 0 PID: 211 Comm: kworker/5:1 Not tainted 6.11.0-rc7-00382-gfc6c92196396 #22
Hardware name: linux,dummy-virt (DT)
Workqueue: events binder_deferred_func
Call trace:
binder_release_work+0x398/0x3d0
binder_deferred_func+0xb60/0x109c
process_one_work+0x51c/0xbd4
worker_thread+0x608/0xee8
Allocated by task 703:
__kmalloc_cache_noprof+0x130/0x280
binder_thread_write+0xdb4/0x42a0
binder_ioctl+0x18f0/0x25ac
__arm64_sys_ioctl+0x124/0x190
invoke_syscall+0x6c/0x254
Freed by task 211:
kfree+0xc4/0x230
binder_deferred_func+0xae8/0x109c
process_one_work+0x51c/0xbd4
worker_thread+0x608/0xee8
==================================================================
This commit fixes the issue by ensuring any queued freeze work is removed
when cleaning up a binder reference. |
In the Linux kernel, the following vulnerability has been resolved:
drm/amdgpu: fix usage slab after free
[ +0.000021] BUG: KASAN: slab-use-after-free in drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched]
[ +0.000027] Read of size 8 at addr ffff8881b8605f88 by task amd_pci_unplug/2147
[ +0.000023] CPU: 6 PID: 2147 Comm: amd_pci_unplug Not tainted 6.10.0+ #1
[ +0.000016] Hardware name: ASUS System Product Name/ROG STRIX B550-F GAMING (WI-FI), BIOS 1401 12/03/2020
[ +0.000016] Call Trace:
[ +0.000008] <TASK>
[ +0.000009] dump_stack_lvl+0x76/0xa0
[ +0.000017] print_report+0xce/0x5f0
[ +0.000017] ? drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched]
[ +0.000019] ? srso_return_thunk+0x5/0x5f
[ +0.000015] ? kasan_complete_mode_report_info+0x72/0x200
[ +0.000016] ? drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched]
[ +0.000019] kasan_report+0xbe/0x110
[ +0.000015] ? drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched]
[ +0.000023] __asan_report_load8_noabort+0x14/0x30
[ +0.000014] drm_sched_entity_flush+0x6cb/0x7a0 [gpu_sched]
[ +0.000020] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? __kasan_check_write+0x14/0x30
[ +0.000016] ? __pfx_drm_sched_entity_flush+0x10/0x10 [gpu_sched]
[ +0.000020] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? __kasan_check_write+0x14/0x30
[ +0.000013] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? enable_work+0x124/0x220
[ +0.000015] ? __pfx_enable_work+0x10/0x10
[ +0.000013] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? free_large_kmalloc+0x85/0xf0
[ +0.000016] drm_sched_entity_destroy+0x18/0x30 [gpu_sched]
[ +0.000020] amdgpu_vce_sw_fini+0x55/0x170 [amdgpu]
[ +0.000735] ? __kasan_check_read+0x11/0x20
[ +0.000016] vce_v4_0_sw_fini+0x80/0x110 [amdgpu]
[ +0.000726] amdgpu_device_fini_sw+0x331/0xfc0 [amdgpu]
[ +0.000679] ? mutex_unlock+0x80/0xe0
[ +0.000017] ? __pfx_amdgpu_device_fini_sw+0x10/0x10 [amdgpu]
[ +0.000662] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? __kasan_check_write+0x14/0x30
[ +0.000013] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? mutex_unlock+0x80/0xe0
[ +0.000016] amdgpu_driver_release_kms+0x16/0x80 [amdgpu]
[ +0.000663] drm_minor_release+0xc9/0x140 [drm]
[ +0.000081] drm_release+0x1fd/0x390 [drm]
[ +0.000082] __fput+0x36c/0xad0
[ +0.000018] __fput_sync+0x3c/0x50
[ +0.000014] __x64_sys_close+0x7d/0xe0
[ +0.000014] x64_sys_call+0x1bc6/0x2680
[ +0.000014] do_syscall_64+0x70/0x130
[ +0.000014] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? irqentry_exit_to_user_mode+0x60/0x190
[ +0.000015] ? srso_return_thunk+0x5/0x5f
[ +0.000014] ? irqentry_exit+0x43/0x50
[ +0.000012] ? srso_return_thunk+0x5/0x5f
[ +0.000013] ? exc_page_fault+0x7c/0x110
[ +0.000015] entry_SYSCALL_64_after_hwframe+0x76/0x7e
[ +0.000014] RIP: 0033:0x7ffff7b14f67
[ +0.000013] Code: ff e8 0d 16 02 00 66 2e 0f 1f 84 00 00 00 00 00 0f 1f 00 f3 0f 1e fa 64 8b 04 25 18 00 00 00 85 c0 75 10 b8 03 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 41 c3 48 83 ec 18 89 7c 24 0c e8 73 ba f7 ff
[ +0.000026] RSP: 002b:00007fffffffe378 EFLAGS: 00000246 ORIG_RAX: 0000000000000003
[ +0.000019] RAX: ffffffffffffffda RBX: 0000000000000000 RCX: 00007ffff7b14f67
[ +0.000014] RDX: 0000000000000000 RSI: 00007ffff7f6f47a RDI: 0000000000000003
[ +0.000014] RBP: 00007fffffffe3a0 R08: 0000555555569890 R09: 0000000000000000
[ +0.000014] R10: 0000000000000000 R11: 0000000000000246 R12: 00007fffffffe5c8
[ +0.000013] R13: 00005555555552a9 R14: 0000555555557d48 R15: 00007ffff7ffd040
[ +0.000020] </TASK>
[ +0.000016] Allocated by task 383 on cpu 7 at 26.880319s:
[ +0.000014] kasan_save_stack+0x28/0x60
[ +0.000008] kasan_save_track+0x18/0x70
[ +0.000007] kasan_save_alloc_info+0x38/0x60
[ +0.000007] __kasan_kmalloc+0xc1/0xd0
[ +0.000007] kmalloc_trace_noprof+0x180/0x380
[ +0.000007] drm_sched_init+0x411/0xec0 [gpu_sched]
[ +0.000012] amdgpu_device_init+0x695f/0xa610 [amdgpu]
[ +0.000658] amdgpu_driver_load_kms+0x1a/0x120 [amdgpu]
[ +0.000662] amdgpu_pci_p
---truncated--- |