CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
iommu/omap: Fix buffer overflow in debugfs
There are two issues here:
1) The "len" variable needs to be checked before the very first write.
Otherwise if omap2_iommu_dump_ctx() with "bytes" less than 32 it is a
buffer overflow.
2) The snprintf() function returns the number of bytes that *would* have
been copied if there were enough space. But we want to know the
number of bytes which were *actually* copied so use scnprintf()
instead. |
Insufficiently specific bounds checking on authorization header could lead to denial of service in the Temporal server on all platforms due to excessive memory allocation.This issue affects all platforms and versions of OSS Server prior to 1.26.3, 1.27.3, and 1.28.1 (i.e., fixed in 1.26.3, 1.27.3, and 1.28.1 and later). Temporal Cloud services are not impacted. |
In the Linux kernel, the following vulnerability has been resolved:
ext4: fix potential out of bound read in ext4_fc_replay_scan()
For scan loop must ensure that at least EXT4_FC_TAG_BASE_LEN space. If remain
space less than EXT4_FC_TAG_BASE_LEN which will lead to out of bound read
when mounting corrupt file system image.
ADD_RANGE/HEAD/TAIL is needed to add extra check when do journal scan, as this
three tags will read data during scan, tag length couldn't less than data length
which will read. |
In the Linux kernel, the following vulnerability has been resolved:
s390/cio: fix out-of-bounds access on cio_ignore free
The channel-subsystem-driver scans for newly available devices whenever
device-IDs are removed from the cio_ignore list using a command such as:
echo free >/proc/cio_ignore
Since an I/O device scan might interfer with running I/Os, commit
172da89ed0ea ("s390/cio: avoid excessive path-verification requests")
introduced an optimization to exclude online devices from the scan.
The newly added check for online devices incorrectly assumes that
an I/O-subchannel's drvdata points to a struct io_subchannel_private.
For devices that are bound to a non-default I/O subchannel driver, such
as the vfio_ccw driver, this results in an out-of-bounds read access
during each scan.
Fix this by changing the scan logic to rely on a driver-independent
online indication. For this we can use struct subchannel->config.ena,
which is the driver's requested subchannel-enabled state. Since I/Os
can only be started on enabled subchannels, this matches the intent
of the original optimization of not scanning devices where I/O might
be running. |
In the Linux kernel, the following vulnerability has been resolved:
ip6mr: fix UAF issue in ip6mr_sk_done() when addrconf_init_net() failed
If the initialization fails in calling addrconf_init_net(), devconf_all is
the pointer that has been released. Then ip6mr_sk_done() is called to
release the net, accessing devconf->mc_forwarding directly causes invalid
pointer access.
The process is as follows:
setup_net()
ops_init()
addrconf_init_net()
all = kmemdup(...) ---> alloc "all"
...
net->ipv6.devconf_all = all;
__addrconf_sysctl_register() ---> failed
...
kfree(all); ---> ipv6.devconf_all invalid
...
ops_exit_list()
...
ip6mr_sk_done()
devconf = net->ipv6.devconf_all;
//devconf is invalid pointer
if (!devconf || !atomic_read(&devconf->mc_forwarding))
The following is the Call Trace information:
BUG: KASAN: use-after-free in ip6mr_sk_done+0x112/0x3a0
Read of size 4 at addr ffff888075508e88 by task ip/14554
Call Trace:
<TASK>
dump_stack_lvl+0x8e/0xd1
print_report+0x155/0x454
kasan_report+0xba/0x1f0
kasan_check_range+0x35/0x1b0
ip6mr_sk_done+0x112/0x3a0
rawv6_close+0x48/0x70
inet_release+0x109/0x230
inet6_release+0x4c/0x70
sock_release+0x87/0x1b0
igmp6_net_exit+0x6b/0x170
ops_exit_list+0xb0/0x170
setup_net+0x7ac/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
RIP: 0033:0x7f7963322547
</TASK>
Allocated by task 14554:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
__kasan_kmalloc+0xa1/0xb0
__kmalloc_node_track_caller+0x4a/0xb0
kmemdup+0x28/0x60
addrconf_init_net+0x1be/0x840
ops_init+0xa5/0x410
setup_net+0x5aa/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0
Freed by task 14554:
kasan_save_stack+0x1e/0x40
kasan_set_track+0x21/0x30
kasan_save_free_info+0x2a/0x40
____kasan_slab_free+0x155/0x1b0
slab_free_freelist_hook+0x11b/0x220
__kmem_cache_free+0xa4/0x360
addrconf_init_net+0x623/0x840
ops_init+0xa5/0x410
setup_net+0x5aa/0xbd0
copy_net_ns+0x2e6/0x6b0
create_new_namespaces+0x382/0xa50
unshare_nsproxy_namespaces+0xa6/0x1c0
ksys_unshare+0x3a4/0x7e0
__x64_sys_unshare+0x2d/0x40
do_syscall_64+0x35/0x80
entry_SYSCALL_64_after_hwframe+0x46/0xb0 |
In the Linux kernel, the following vulnerability has been resolved:
drivers: serial: jsm: fix some leaks in probe
This error path needs to unwind instead of just returning directly. |
In the Linux kernel, the following vulnerability has been resolved:
nbd: Fix hung when signal interrupts nbd_start_device_ioctl()
syzbot reported hung task [1]. The following program is a simplified
version of the reproducer:
int main(void)
{
int sv[2], fd;
if (socketpair(AF_UNIX, SOCK_STREAM, 0, sv) < 0)
return 1;
if ((fd = open("/dev/nbd0", 0)) < 0)
return 1;
if (ioctl(fd, NBD_SET_SIZE_BLOCKS, 0x81) < 0)
return 1;
if (ioctl(fd, NBD_SET_SOCK, sv[0]) < 0)
return 1;
if (ioctl(fd, NBD_DO_IT) < 0)
return 1;
return 0;
}
When signal interrupt nbd_start_device_ioctl() waiting the condition
atomic_read(&config->recv_threads) == 0, the task can hung because it
waits the completion of the inflight IOs.
This patch fixes the issue by clearing queue, not just shutdown, when
signal interrupt nbd_start_device_ioctl(). |
In the Linux kernel, the following vulnerability has been resolved:
drm/bridge: megachips: Fix a null pointer dereference bug
When removing the module we will get the following warning:
[ 31.911505] i2c-core: driver [stdp2690-ge-b850v3-fw] unregistered
[ 31.912484] general protection fault, probably for non-canonical address 0xdffffc0000000001: 0000 [#1] PREEMPT SMP KASAN PTI
[ 31.913338] KASAN: null-ptr-deref in range [0x0000000000000008-0x000000000000000f]
[ 31.915280] RIP: 0010:drm_bridge_remove+0x97/0x130
[ 31.921825] Call Trace:
[ 31.922533] stdp4028_ge_b850v3_fw_remove+0x34/0x60 [megachips_stdpxxxx_ge_b850v3_fw]
[ 31.923139] i2c_device_remove+0x181/0x1f0
The two bridges (stdp2690, stdp4028) do not probe at the same time, so
the driver does not call ge_b850v3_resgiter() when probing, causing the
driver to try to remove the object that has not been initialized.
Fix this by checking whether both the bridges are probed. |
In the Linux kernel, the following vulnerability has been resolved:
perf/x86/intel/uncore: Fix reference count leak in hswep_has_limit_sbox()
pci_get_device() will increase the reference count for the returned
'dev'. We need to call pci_dev_put() to decrease the reference count.
Since 'dev' is only used in pci_read_config_dword(), let's add
pci_dev_put() right after it. |
In the Linux kernel, the following vulnerability has been resolved:
coresight: trbe: remove cpuhp instance node before remove cpuhp state
cpuhp_state_add_instance() and cpuhp_state_remove_instance() should
be used in pairs. Or there will lead to the warn on
cpuhp_remove_multi_state() since the cpuhp_step list is not empty.
The following is the error log with 'rmmod coresight-trbe':
Error: Removing state 215 which has instances left.
Call trace:
__cpuhp_remove_state_cpuslocked+0x144/0x160
__cpuhp_remove_state+0xac/0x100
arm_trbe_device_remove+0x2c/0x60 [coresight_trbe]
platform_remove+0x34/0x70
device_remove+0x54/0x90
device_release_driver_internal+0x1e4/0x250
driver_detach+0x5c/0xb0
bus_remove_driver+0x64/0xc0
driver_unregister+0x3c/0x70
platform_driver_unregister+0x20/0x30
arm_trbe_exit+0x1c/0x658 [coresight_trbe]
__arm64_sys_delete_module+0x1ac/0x24c
invoke_syscall+0x50/0x120
el0_svc_common.constprop.0+0x58/0x1a0
do_el0_svc+0x38/0xd0
el0_svc+0x2c/0xc0
el0t_64_sync_handler+0x1ac/0x1b0
el0t_64_sync+0x19c/0x1a0
---[ end trace 0000000000000000 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
ACPI: tables: FPDT: Don't call acpi_os_map_memory() on invalid phys address
On a Packard Bell Dot SC (Intel Atom N2600 model) there is a FPDT table
which contains invalid physical addresses, with high bits set which fall
outside the range of the CPU-s supported physical address range.
Calling acpi_os_map_memory() on such an invalid phys address leads to
the below WARN_ON in ioremap triggering resulting in an oops/stacktrace.
Add code to verify the physical address before calling acpi_os_map_memory()
to fix / avoid the oops.
[ 1.226900] ioremap: invalid physical address 3001000000000000
[ 1.226949] ------------[ cut here ]------------
[ 1.226962] WARNING: CPU: 1 PID: 1 at arch/x86/mm/ioremap.c:200 __ioremap_caller.cold+0x43/0x5f
[ 1.226996] Modules linked in:
[ 1.227016] CPU: 1 PID: 1 Comm: swapper/0 Not tainted 6.0.0-rc3+ #490
[ 1.227029] Hardware name: Packard Bell dot s/SJE01_CT, BIOS V1.10 07/23/2013
[ 1.227038] RIP: 0010:__ioremap_caller.cold+0x43/0x5f
[ 1.227054] Code: 96 00 00 e9 f8 af 24 ff 89 c6 48 c7 c7 d8 0c 84 99 e8 6a 96 00 00 e9 76 af 24 ff 48 89 fe 48 c7 c7 a8 0c 84 99 e8 56 96 00 00 <0f> 0b e9 60 af 24 ff 48 8b 34 24 48 c7 c7 40 0d 84 99 e8 3f 96 00
[ 1.227067] RSP: 0000:ffffb18c40033d60 EFLAGS: 00010286
[ 1.227084] RAX: 0000000000000032 RBX: 3001000000000000 RCX: 0000000000000000
[ 1.227095] RDX: 0000000000000001 RSI: 00000000ffffdfff RDI: 00000000ffffffff
[ 1.227105] RBP: 3001000000000000 R08: 0000000000000000 R09: ffffb18c40033c18
[ 1.227115] R10: 0000000000000003 R11: ffffffff99d62fe8 R12: 0000000000000008
[ 1.227124] R13: 0003001000000000 R14: 0000000000001000 R15: 3001000000000000
[ 1.227135] FS: 0000000000000000(0000) GS:ffff913a3c080000(0000) knlGS:0000000000000000
[ 1.227146] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 1.227156] CR2: 0000000000000000 CR3: 0000000018c26000 CR4: 00000000000006e0
[ 1.227167] Call Trace:
[ 1.227176] <TASK>
[ 1.227185] ? acpi_os_map_iomem+0x1c9/0x1e0
[ 1.227215] ? kmem_cache_alloc_trace+0x187/0x370
[ 1.227254] acpi_os_map_iomem+0x1c9/0x1e0
[ 1.227288] acpi_init_fpdt+0xa8/0x253
[ 1.227308] ? acpi_debugfs_init+0x1f/0x1f
[ 1.227339] do_one_initcall+0x5a/0x300
[ 1.227406] ? rcu_read_lock_sched_held+0x3f/0x80
[ 1.227442] kernel_init_freeable+0x28b/0x2cc
[ 1.227512] ? rest_init+0x170/0x170
[ 1.227538] kernel_init+0x16/0x140
[ 1.227552] ret_from_fork+0x1f/0x30
[ 1.227639] </TASK>
[ 1.227647] irq event stamp: 186819
[ 1.227656] hardirqs last enabled at (186825): [<ffffffff98184a6e>] __up_console_sem+0x5e/0x70
[ 1.227672] hardirqs last disabled at (186830): [<ffffffff98184a53>] __up_console_sem+0x43/0x70
[ 1.227686] softirqs last enabled at (186576): [<ffffffff980fbc9d>] __irq_exit_rcu+0xed/0x160
[ 1.227701] softirqs last disabled at (186569): [<ffffffff980fbc9d>] __irq_exit_rcu+0xed/0x160
[ 1.227715] ---[ end trace 0000000000000000 ]--- |
In the Linux kernel, the following vulnerability has been resolved:
mtd: maps: pxa2xx-flash: fix memory leak in probe
Free 'info' upon remapping error to avoid a memory leak.
[<miquel.raynal@bootlin.com>: Reword the commit log] |
In the Linux kernel, the following vulnerability has been resolved:
ACPI: processor: idle: Check acpi_fetch_acpi_dev() return value
The return value of acpi_fetch_acpi_dev() could be NULL, which would
cause a NULL pointer dereference to occur in acpi_device_hid().
[ rjw: Subject and changelog edits, added empty line after if () ] |
In the Linux kernel, the following vulnerability has been resolved:
jbd2: fix potential use-after-free in jbd2_fc_wait_bufs
In 'jbd2_fc_wait_bufs' use 'bh' after put buffer head reference count
which may lead to use-after-free.
So judge buffer if uptodate before put buffer head reference count. |
In the Linux kernel, the following vulnerability has been resolved:
block, bfq: fix uaf for bfqq in bfq_exit_icq_bfqq
Commit 64dc8c732f5c ("block, bfq: fix possible uaf for 'bfqq->bic'")
will access 'bic->bfqq' in bic_set_bfqq(), however, bfq_exit_icq_bfqq()
can free bfqq first, and then call bic_set_bfqq(), which will cause uaf.
Fix the problem by moving bfq_exit_bfqq() behind bic_set_bfqq(). |
In the Linux kernel, the following vulnerability has been resolved:
crypto: cavium - prevent integer overflow loading firmware
The "code_length" value comes from the firmware file. If your firmware
is untrusted realistically there is probably very little you can do to
protect yourself. Still we try to limit the damage as much as possible.
Also Smatch marks any data read from the filesystem as untrusted and
prints warnings if it not capped correctly.
The "ntohl(ucode->code_length) * 2" multiplication can have an
integer overflow. |
In the Linux kernel, the following vulnerability has been resolved:
wwan_hwsim: fix possible memory leak in wwan_hwsim_dev_new()
Inject fault while probing module, if device_register() fails,
but the refcount of kobject is not decreased to 0, the name
allocated in dev_set_name() is leaked. Fix this by calling
put_device(), so that name can be freed in callback function
kobject_cleanup().
unreferenced object 0xffff88810152ad20 (size 8):
comm "modprobe", pid 252, jiffies 4294849206 (age 22.713s)
hex dump (first 8 bytes):
68 77 73 69 6d 30 00 ff hwsim0..
backtrace:
[<000000009c3504ed>] __kmalloc_node_track_caller+0x44/0x1b0
[<00000000c0228a5e>] kvasprintf+0xb5/0x140
[<00000000cff8c21f>] kvasprintf_const+0x55/0x180
[<0000000055a1e073>] kobject_set_name_vargs+0x56/0x150
[<000000000a80b139>] dev_set_name+0xab/0xe0 |
In the Linux kernel, the following vulnerability has been resolved:
video/aperture: Call sysfb_disable() before removing PCI devices
Call sysfb_disable() from aperture_remove_conflicting_pci_devices()
before removing PCI devices. Without, simpledrm can still bind to
simple-framebuffer devices after the hardware driver has taken over
the hardware. Both drivers interfere with each other and results are
undefined.
Reported modesetting errors [1] are shown below.
---- snap ----
rcu: INFO: rcu_sched detected expedited stalls on CPUs/tasks: { 13-.... } 7 jiffies s: 165 root: 0x2000/.
rcu: blocking rcu_node structures (internal RCU debug):
Task dump for CPU 13:
task:X state:R running task stack: 0 pid: 4242 ppid: 4228 flags:0x00000008
Call Trace:
<TASK>
? commit_tail+0xd7/0x130
? drm_atomic_helper_commit+0x126/0x150
? drm_atomic_commit+0xa4/0xe0
? drm_plane_get_damage_clips.cold+0x1c/0x1c
? drm_atomic_helper_dirtyfb+0x19e/0x280
? drm_mode_dirtyfb_ioctl+0x10f/0x1e0
? drm_mode_getfb2_ioctl+0x2d0/0x2d0
? drm_ioctl_kernel+0xc4/0x150
? drm_ioctl+0x246/0x3f0
? drm_mode_getfb2_ioctl+0x2d0/0x2d0
? __x64_sys_ioctl+0x91/0xd0
? do_syscall_64+0x60/0xd0
? entry_SYSCALL_64_after_hwframe+0x4b/0xb5
</TASK>
...
rcu: INFO: rcu_sched detected expedited stalls on CPUs/tasks: { 13-.... } 30 jiffies s: 169 root: 0x2000/.
rcu: blocking rcu_node structures (internal RCU debug):
Task dump for CPU 13:
task:X state:R running task stack: 0 pid: 4242 ppid: 4228 flags:0x0000400e
Call Trace:
<TASK>
? memcpy_toio+0x76/0xc0
? memcpy_toio+0x1b/0xc0
? drm_fb_memcpy_toio+0x76/0xb0
? drm_fb_blit_toio+0x75/0x2b0
? simpledrm_simple_display_pipe_update+0x132/0x150
? drm_atomic_helper_commit_planes+0xb6/0x230
? drm_atomic_helper_commit_tail+0x44/0x80
? commit_tail+0xd7/0x130
? drm_atomic_helper_commit+0x126/0x150
? drm_atomic_commit+0xa4/0xe0
? drm_plane_get_damage_clips.cold+0x1c/0x1c
? drm_atomic_helper_dirtyfb+0x19e/0x280
? drm_mode_dirtyfb_ioctl+0x10f/0x1e0
? drm_mode_getfb2_ioctl+0x2d0/0x2d0
? drm_ioctl_kernel+0xc4/0x150
? drm_ioctl+0x246/0x3f0
? drm_mode_getfb2_ioctl+0x2d0/0x2d0
? __x64_sys_ioctl+0x91/0xd0
? do_syscall_64+0x60/0xd0
? entry_SYSCALL_64_after_hwframe+0x4b/0xb5
</TASK>
The problem was added by commit 5e0137612430 ("video/aperture: Disable
and unregister sysfb devices via aperture helpers") to v6.0.3 and does
not exist in the mainline branch.
The mainline commit 5e0137612430 ("video/aperture: Disable and
unregister sysfb devices via aperture helpers") has been backported
from v6.0-rc1 to stable v6.0.3 from a larger patch series [2] that
reworks fbdev framebuffer ownership. The backport misses a change to
aperture_remove_conflicting_pci_devices(). Mainline itself is fine,
because the function does not exist there as a result of the patch
series.
Instead of backporting the whole series, fix the additional function. |
In the Linux kernel, the following vulnerability has been resolved:
fs: jfs: fix shift-out-of-bounds in dbDiscardAG
This should be applied to most URSAN bugs found recently by syzbot,
by guarding the dbMount. As syzbot feeding rubbish into the bmap
descriptor. |
In the Linux kernel, the following vulnerability has been resolved:
hugetlbfs: fix null-ptr-deref in hugetlbfs_parse_param()
Syzkaller reports a null-ptr-deref bug as follows:
======================================================
KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007]
RIP: 0010:hugetlbfs_parse_param+0x1dd/0x8e0 fs/hugetlbfs/inode.c:1380
[...]
Call Trace:
<TASK>
vfs_parse_fs_param fs/fs_context.c:148 [inline]
vfs_parse_fs_param+0x1f9/0x3c0 fs/fs_context.c:129
vfs_parse_fs_string+0xdb/0x170 fs/fs_context.c:191
generic_parse_monolithic+0x16f/0x1f0 fs/fs_context.c:231
do_new_mount fs/namespace.c:3036 [inline]
path_mount+0x12de/0x1e20 fs/namespace.c:3370
do_mount fs/namespace.c:3383 [inline]
__do_sys_mount fs/namespace.c:3591 [inline]
__se_sys_mount fs/namespace.c:3568 [inline]
__x64_sys_mount+0x27f/0x300 fs/namespace.c:3568
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x35/0xb0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd
[...]
</TASK>
======================================================
According to commit "vfs: parse: deal with zero length string value",
kernel will set the param->string to null pointer in vfs_parse_fs_string()
if fs string has zero length.
Yet the problem is that, hugetlbfs_parse_param() will dereference the
param->string, without checking whether it is a null pointer. To be more
specific, if hugetlbfs_parse_param() parses an illegal mount parameter,
such as "size=,", kernel will constructs struct fs_parameter with null
pointer in vfs_parse_fs_string(), then passes this struct fs_parameter to
hugetlbfs_parse_param(), which triggers the above null-ptr-deref bug.
This patch solves it by adding sanity check on param->string
in hugetlbfs_parse_param(). |