| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
net: dsa: mv88e6060: prevent crash on an unused port
If the port isn't a CPU port nor a user port, 'cpu_dp'
is a null pointer and a crash happened on dereferencing
it in mv88e6060_setup_port():
[ 9.575872] Unable to handle kernel NULL pointer dereference at virtual address 00000014
...
[ 9.942216] mv88e6060_setup from dsa_register_switch+0x814/0xe84
[ 9.948616] dsa_register_switch from mdio_probe+0x2c/0x54
[ 9.954433] mdio_probe from really_probe.part.0+0x98/0x2a0
[ 9.960375] really_probe.part.0 from driver_probe_device+0x30/0x10c
[ 9.967029] driver_probe_device from __device_attach_driver+0xb8/0x13c
[ 9.973946] __device_attach_driver from bus_for_each_drv+0x90/0xe0
[ 9.980509] bus_for_each_drv from __device_attach+0x110/0x184
[ 9.986632] __device_attach from bus_probe_device+0x8c/0x94
[ 9.992577] bus_probe_device from deferred_probe_work_func+0x78/0xa8
[ 9.999311] deferred_probe_work_func from process_one_work+0x290/0x73c
[ 10.006292] process_one_work from worker_thread+0x30/0x4b8
[ 10.012155] worker_thread from kthread+0xd4/0x10c
[ 10.017238] kthread from ret_from_fork+0x14/0x3c |
| In the Linux kernel, the following vulnerability has been resolved:
net/sunrpc: fix potential memory leaks in rpc_sysfs_xprt_state_change()
The issue happens on some error handling paths. When the function
fails to grab the object `xprt`, it simply returns 0, forgetting to
decrease the reference count of another object `xps`, which is
increased by rpc_sysfs_xprt_kobj_get_xprt_switch(), causing refcount
leaks. Also, the function forgets to check whether `xps` is valid
before using it, which may result in NULL-dereferencing issues.
Fix it by adding proper error handling code when either `xprt` or
`xps` is NULL. |
| In the Linux kernel, the following vulnerability has been resolved:
powerpc/pci: Fix get_phb_number() locking
The recent change to get_phb_number() causes a DEBUG_ATOMIC_SLEEP
warning on some systems:
BUG: sleeping function called from invalid context at kernel/locking/mutex.c:580
in_atomic(): 1, irqs_disabled(): 0, non_block: 0, pid: 1, name: swapper
preempt_count: 1, expected: 0
RCU nest depth: 0, expected: 0
1 lock held by swapper/1:
#0: c157efb0 (hose_spinlock){+.+.}-{2:2}, at: pcibios_alloc_controller+0x64/0x220
Preemption disabled at:
[<00000000>] 0x0
CPU: 0 PID: 1 Comm: swapper Not tainted 5.19.0-yocto-standard+ #1
Call Trace:
[d101dc90] [c073b264] dump_stack_lvl+0x50/0x8c (unreliable)
[d101dcb0] [c0093b70] __might_resched+0x258/0x2a8
[d101dcd0] [c0d3e634] __mutex_lock+0x6c/0x6ec
[d101dd50] [c0a84174] of_alias_get_id+0x50/0xf4
[d101dd80] [c002ec78] pcibios_alloc_controller+0x1b8/0x220
[d101ddd0] [c140c9dc] pmac_pci_init+0x198/0x784
[d101de50] [c140852c] discover_phbs+0x30/0x4c
[d101de60] [c0007fd4] do_one_initcall+0x94/0x344
[d101ded0] [c1403b40] kernel_init_freeable+0x1a8/0x22c
[d101df10] [c00086e0] kernel_init+0x34/0x160
[d101df30] [c001b334] ret_from_kernel_thread+0x5c/0x64
This is because pcibios_alloc_controller() holds hose_spinlock but
of_alias_get_id() takes of_mutex which can sleep.
The hose_spinlock protects the phb_bitmap, and also the hose_list, but
it doesn't need to be held while get_phb_number() calls the OF routines,
because those are only looking up information in the device tree.
So fix it by having get_phb_number() take the hose_spinlock itself, only
where required, and then dropping the lock before returning.
pcibios_alloc_controller() then needs to take the lock again before the
list_add() but that's safe, the order of the list is not important. |
| In Jakarta Mail 2.0.2 it is possible to preform a SMTP Injection by utilizing the \r and \n UTF-8 characters to separate different messages. |
| In the Linux kernel, the following vulnerability has been resolved:
net: qrtr: start MHI channel after endpoit creation
MHI channel may generates event/interrupt right after enabling.
It may leads to 2 race conditions issues.
1)
Such event may be dropped by qcom_mhi_qrtr_dl_callback() at check:
if (!qdev || mhi_res->transaction_status)
return;
Because dev_set_drvdata(&mhi_dev->dev, qdev) may be not performed at
this moment. In this situation qrtr-ns will be unable to enumerate
services in device.
---------------------------------------------------------------
2)
Such event may come at the moment after dev_set_drvdata() and
before qrtr_endpoint_register(). In this case kernel will panic with
accessing wrong pointer at qcom_mhi_qrtr_dl_callback():
rc = qrtr_endpoint_post(&qdev->ep, mhi_res->buf_addr,
mhi_res->bytes_xferd);
Because endpoint is not created yet.
--------------------------------------------------------------
So move mhi_prepare_for_transfer_autoqueue after endpoint creation
to fix it. |
| In the Linux kernel, the following vulnerability has been resolved:
net: fix potential refcount leak in ndisc_router_discovery()
The issue happens on specific paths in the function. After both the
object `rt` and `neigh` are grabbed successfully, when `lifetime` is
nonzero but the metric needs change, the function just deletes the
route and set `rt` to NULL. Then, it may try grabbing `rt` and `neigh`
again if above conditions hold. The function simply overwrite `neigh`
if succeeds or returns if fails, without decreasing the reference
count of previous `neigh`. This may result in memory leaks.
Fix it by decrementing the reference count of `neigh` in place. |
| In the Linux kernel, the following vulnerability has been resolved:
virtio-blk: Avoid use-after-free on suspend/resume
hctx->user_data is set to vq in virtblk_init_hctx(). However, vq is
freed on suspend and reallocated on resume. So, hctx->user_data is
invalid after resume, and it will cause use-after-free accessing which
will result in the kernel crash something like below:
[ 22.428391] Call Trace:
[ 22.428899] <TASK>
[ 22.429339] virtqueue_add_split+0x3eb/0x620
[ 22.430035] ? __blk_mq_alloc_requests+0x17f/0x2d0
[ 22.430789] ? kvm_clock_get_cycles+0x14/0x30
[ 22.431496] virtqueue_add_sgs+0xad/0xd0
[ 22.432108] virtblk_add_req+0xe8/0x150
[ 22.432692] virtio_queue_rqs+0xeb/0x210
[ 22.433330] blk_mq_flush_plug_list+0x1b8/0x280
[ 22.434059] __blk_flush_plug+0xe1/0x140
[ 22.434853] blk_finish_plug+0x20/0x40
[ 22.435512] read_pages+0x20a/0x2e0
[ 22.436063] ? folio_add_lru+0x62/0xa0
[ 22.436652] page_cache_ra_unbounded+0x112/0x160
[ 22.437365] filemap_get_pages+0xe1/0x5b0
[ 22.437964] ? context_to_sid+0x70/0x100
[ 22.438580] ? sidtab_context_to_sid+0x32/0x400
[ 22.439979] filemap_read+0xcd/0x3d0
[ 22.440917] xfs_file_buffered_read+0x4a/0xc0
[ 22.441984] xfs_file_read_iter+0x65/0xd0
[ 22.442970] __kernel_read+0x160/0x2e0
[ 22.443921] bprm_execve+0x21b/0x640
[ 22.444809] do_execveat_common.isra.0+0x1a8/0x220
[ 22.446008] __x64_sys_execve+0x2d/0x40
[ 22.446920] do_syscall_64+0x37/0x90
[ 22.447773] entry_SYSCALL_64_after_hwframe+0x63/0xcd
This patch fixes this issue by getting vq from vblk, and removes
virtblk_init_hctx(). |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: Fix adminq error handling
iavf_alloc_asq_bufs/iavf_alloc_arq_bufs allocates with dma_alloc_coherent
memory for VF mailbox.
Free DMA regions for both ASQ and ARQ in case error happens during
configuration of ASQ/ARQ registers.
Without this change it is possible to see when unloading interface:
74626.583369: dma_debug_device_change: device driver has pending DMA allocations while released from device [count=32]
One of leaked entries details: [device address=0x0000000b27ff9000] [size=4096 bytes] [mapped with DMA_BIDIRECTIONAL] [mapped as coherent] |
| This CVE ID was assigned in error to a vulnerability that was both introduced and fixed before the code landed in the Stable channel of Chrome, and has been withdrawn. |
| This CVE ID has been rejected or withdrawn by its CVE Numbering Authority. |
| The age-restriction WordPress plugin through 3.0.2 does not have authorisation in the age_restrictionRemoteSupportRequest function, allowing any authenticated users, such as subscriber to create an admin user with a hardcoded username and arbitrary password. |
| The WP Go Maps (formerly WP Google Maps) WordPress plugin before 9.0.48 does not sanitize user input provided via an AJAX action, allowing unauthenticated users to store XSS payloads which are later retrieved from another AJAX call and output unescaped. |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: Fix NULL pointer dereference in iavf_get_link_ksettings
Fix possible NULL pointer dereference, due to freeing of adapter->vf_res
in iavf_init_get_resources. Previous commit introduced a regression,
where receiving IAVF_ERR_ADMIN_QUEUE_NO_WORK from iavf_get_vf_config
would free adapter->vf_res. However, netdev is still registered, so
ethtool_ops can be called. Calling iavf_get_link_ksettings with no vf_res,
will result with:
[ 9385.242676] BUG: kernel NULL pointer dereference, address: 0000000000000008
[ 9385.242683] #PF: supervisor read access in kernel mode
[ 9385.242686] #PF: error_code(0x0000) - not-present page
[ 9385.242690] PGD 0 P4D 0
[ 9385.242696] Oops: 0000 [#1] PREEMPT SMP DEBUG_PAGEALLOC PTI
[ 9385.242701] CPU: 6 PID: 3217 Comm: pmdalinux Kdump: loaded Tainted: G S E 5.18.0-04958-ga54ce3703613-dirty #1
[ 9385.242708] Hardware name: Dell Inc. PowerEdge R730/0WCJNT, BIOS 2.11.0 11/02/2019
[ 9385.242710] RIP: 0010:iavf_get_link_ksettings+0x29/0xd0 [iavf]
[ 9385.242745] Code: 00 0f 1f 44 00 00 b8 01 ef ff ff 48 c7 46 30 00 00 00 00 48 c7 46 38 00 00 00 00 c6 46 0b 00 66 89 46 08 48 8b 87 68 0e 00 00 <f6> 40 08 80 75 50 8b 87 5c 0e 00 00 83 f8 08 74 7a 76 1d 83 f8 20
[ 9385.242749] RSP: 0018:ffffc0560ec7fbd0 EFLAGS: 00010246
[ 9385.242755] RAX: 0000000000000000 RBX: ffffc0560ec7fc08 RCX: 0000000000000000
[ 9385.242759] RDX: ffffffffc0ad4550 RSI: ffffc0560ec7fc08 RDI: ffffa0fc66674000
[ 9385.242762] RBP: 00007ffd1fb2bf50 R08: b6a2d54b892363ee R09: ffffa101dc14fb00
[ 9385.242765] R10: 0000000000000000 R11: 0000000000000004 R12: ffffa0fc66674000
[ 9385.242768] R13: 0000000000000000 R14: ffffa0fc66674000 R15: 00000000ffffffa1
[ 9385.242771] FS: 00007f93711a2980(0000) GS:ffffa0fad72c0000(0000) knlGS:0000000000000000
[ 9385.242775] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
[ 9385.242778] CR2: 0000000000000008 CR3: 0000000a8e61c003 CR4: 00000000003706e0
[ 9385.242781] DR0: 0000000000000000 DR1: 0000000000000000 DR2: 0000000000000000
[ 9385.242784] DR3: 0000000000000000 DR6: 00000000fffe0ff0 DR7: 0000000000000400
[ 9385.242787] Call Trace:
[ 9385.242791] <TASK>
[ 9385.242793] ethtool_get_settings+0x71/0x1a0
[ 9385.242814] __dev_ethtool+0x426/0x2f40
[ 9385.242823] ? slab_post_alloc_hook+0x4f/0x280
[ 9385.242836] ? kmem_cache_alloc_trace+0x15d/0x2f0
[ 9385.242841] ? dev_ethtool+0x59/0x170
[ 9385.242848] dev_ethtool+0xa7/0x170
[ 9385.242856] dev_ioctl+0xc3/0x520
[ 9385.242866] sock_do_ioctl+0xa0/0xe0
[ 9385.242877] sock_ioctl+0x22f/0x320
[ 9385.242885] __x64_sys_ioctl+0x84/0xc0
[ 9385.242896] do_syscall_64+0x3a/0x80
[ 9385.242904] entry_SYSCALL_64_after_hwframe+0x46/0xb0
[ 9385.242918] RIP: 0033:0x7f93702396db
[ 9385.242923] Code: 73 01 c3 48 8b 0d ad 57 38 00 f7 d8 64 89 01 48 83 c8 ff c3 66 2e 0f 1f 84 00 00 00 00 00 90 f3 0f 1e fa b8 10 00 00 00 0f 05 <48> 3d 01 f0 ff ff 73 01 c3 48 8b 0d 7d 57 38 00 f7 d8 64 89 01 48
[ 9385.242927] RSP: 002b:00007ffd1fb2bf18 EFLAGS: 00000246 ORIG_RAX: 0000000000000010
[ 9385.242932] RAX: ffffffffffffffda RBX: 000055671b1d2fe0 RCX: 00007f93702396db
[ 9385.242935] RDX: 00007ffd1fb2bf20 RSI: 0000000000008946 RDI: 0000000000000007
[ 9385.242937] RBP: 00007ffd1fb2bf20 R08: 0000000000000003 R09: 0030763066307330
[ 9385.242940] R10: 0000000000000000 R11: 0000000000000246 R12: 00007ffd1fb2bf80
[ 9385.242942] R13: 0000000000000007 R14: 0000556719f6de90 R15: 00007ffd1fb2c1b0
[ 9385.242948] </TASK>
[ 9385.242949] Modules linked in: iavf(E) xt_CHECKSUM xt_MASQUERADE xt_conntrack ipt_REJECT nft_compat nf_nat_tftp nft_objref nf_conntrack_tftp bridge stp llc nft_fib_inet nft_fib_ipv4 nft_fib_ipv6 nft_fib nft_reject_inet nf_reject_ipv4 nf_reject_ipv6 nft_reject nft_ct nft_chain_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ip_set nf_tables rfkill nfnetlink vfat fat irdma ib_uverbs ib_core intel_rapl_msr intel_rapl_common sb_edac x86_pkg_temp_thermal intel_powerclamp coretem
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
iavf: Fix reset error handling
Do not call iavf_close in iavf_reset_task error handling. Doing so can
lead to double call of napi_disable, which can lead to deadlock there.
Removing VF would lead to iavf_remove task being stuck, because it
requires crit_lock, which is held by iavf_close.
Call iavf_disable_vf if reset fail, so that driver will clean up
remaining invalid resources.
During rapid VF resets, HW can fail to setup VF mailbox. Wrong
error handling can lead to iavf_remove being stuck with:
[ 5218.999087] iavf 0000:82:01.0: Failed to init adminq: -53
...
[ 5267.189211] INFO: task repro.sh:11219 blocked for more than 30 seconds.
[ 5267.189520] Tainted: G S E 5.18.0-04958-ga54ce3703613-dirty #1
[ 5267.189764] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message.
[ 5267.190062] task:repro.sh state:D stack: 0 pid:11219 ppid: 8162 flags:0x00000000
[ 5267.190347] Call Trace:
[ 5267.190647] <TASK>
[ 5267.190927] __schedule+0x460/0x9f0
[ 5267.191264] schedule+0x44/0xb0
[ 5267.191563] schedule_preempt_disabled+0x14/0x20
[ 5267.191890] __mutex_lock.isra.12+0x6e3/0xac0
[ 5267.192237] ? iavf_remove+0xf9/0x6c0 [iavf]
[ 5267.192565] iavf_remove+0x12a/0x6c0 [iavf]
[ 5267.192911] ? _raw_spin_unlock_irqrestore+0x1e/0x40
[ 5267.193285] pci_device_remove+0x36/0xb0
[ 5267.193619] device_release_driver_internal+0xc1/0x150
[ 5267.193974] pci_stop_bus_device+0x69/0x90
[ 5267.194361] pci_stop_and_remove_bus_device+0xe/0x20
[ 5267.194735] pci_iov_remove_virtfn+0xba/0x120
[ 5267.195130] sriov_disable+0x2f/0xe0
[ 5267.195506] ice_free_vfs+0x7d/0x2f0 [ice]
[ 5267.196056] ? pci_get_device+0x4f/0x70
[ 5267.196496] ice_sriov_configure+0x78/0x1a0 [ice]
[ 5267.196995] sriov_numvfs_store+0xfe/0x140
[ 5267.197466] kernfs_fop_write_iter+0x12e/0x1c0
[ 5267.197918] new_sync_write+0x10c/0x190
[ 5267.198404] vfs_write+0x24e/0x2d0
[ 5267.198886] ksys_write+0x5c/0xd0
[ 5267.199367] do_syscall_64+0x3a/0x80
[ 5267.199827] entry_SYSCALL_64_after_hwframe+0x46/0xb0
[ 5267.200317] RIP: 0033:0x7f5b381205c8
[ 5267.200814] RSP: 002b:00007fff8c7e8c78 EFLAGS: 00000246 ORIG_RAX: 0000000000000001
[ 5267.201981] RAX: ffffffffffffffda RBX: 0000000000000002 RCX: 00007f5b381205c8
[ 5267.202620] RDX: 0000000000000002 RSI: 00005569420ee900 RDI: 0000000000000001
[ 5267.203426] RBP: 00005569420ee900 R08: 000000000000000a R09: 00007f5b38180820
[ 5267.204327] R10: 000000000000000a R11: 0000000000000246 R12: 00007f5b383c06e0
[ 5267.205193] R13: 0000000000000002 R14: 00007f5b383bb880 R15: 0000000000000002
[ 5267.206041] </TASK>
[ 5267.206970] Kernel panic - not syncing: hung_task: blocked tasks
[ 5267.207809] CPU: 48 PID: 551 Comm: khungtaskd Kdump: loaded Tainted: G S E 5.18.0-04958-ga54ce3703613-dirty #1
[ 5267.208726] Hardware name: Dell Inc. PowerEdge R730/0WCJNT, BIOS 2.11.0 11/02/2019
[ 5267.209623] Call Trace:
[ 5267.210569] <TASK>
[ 5267.211480] dump_stack_lvl+0x33/0x42
[ 5267.212472] panic+0x107/0x294
[ 5267.213467] watchdog.cold.8+0xc/0xbb
[ 5267.214413] ? proc_dohung_task_timeout_secs+0x30/0x30
[ 5267.215511] kthread+0xf4/0x120
[ 5267.216459] ? kthread_complete_and_exit+0x20/0x20
[ 5267.217505] ret_from_fork+0x22/0x30
[ 5267.218459] </TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
octeontx2-af: Fix mcam entry resource leak
The teardown sequence in FLR handler returns if no NIX LF
is attached to PF/VF because it indicates that graceful
shutdown of resources already happened. But there is a
chance of all allocated MCAM entries not being freed by
PF/VF. Hence free mcam entries even in case of detached LF. |
| In the Linux kernel, the following vulnerability has been resolved:
ceph: don't leak snap_rwsem in handle_cap_grant
When handle_cap_grant is called on an IMPORT op, then the snap_rwsem is
held and the function is expected to release it before returning. It
currently fails to do that in all cases which could lead to a deadlock. |
| In the Linux kernel, the following vulnerability has been resolved:
vdpa_sim_blk: set number of address spaces and virtqueue groups
Commit bda324fd037a ("vdpasim: control virtqueue support") added two
new fields (nas, ngroups) to vdpasim_dev_attr, but we forgot to
initialize them for vdpa_sim_blk.
When creating a new vdpa_sim_blk device this causes the kernel
to panic in this way:
$ vdpa dev add mgmtdev vdpasim_blk name blk0
BUG: kernel NULL pointer dereference, address: 0000000000000030
...
RIP: 0010:vhost_iotlb_add_range_ctx+0x41/0x220 [vhost_iotlb]
...
Call Trace:
<TASK>
vhost_iotlb_add_range+0x11/0x800 [vhost_iotlb]
vdpasim_map_range+0x91/0xd0 [vdpa_sim]
vdpasim_alloc_coherent+0x56/0x90 [vdpa_sim]
...
This happens because vdpasim->iommu[0] is not initialized when
dev_attr.nas is 0.
Let's fix this issue by initializing both (nas, ngroups) to 1 for
vdpa_sim_blk. |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix NULL deref in ntfs_update_mftmirr
If ntfs_fill_super() wasn't called then sbi->sb will be equal to NULL.
Code should check this ptr before dereferencing. Syzbot hit this issue
via passing wrong mount param as can be seen from log below
Fail log:
ntfs3: Unknown parameter 'iochvrset'
general protection fault, probably for non-canonical address 0xdffffc0000000003: 0000 [#1] PREEMPT SMP KASAN
KASAN: null-ptr-deref in range [0x0000000000000018-0x000000000000001f]
CPU: 1 PID: 3589 Comm: syz-executor210 Not tainted 5.18.0-rc3-syzkaller-00016-gb253435746d9 #0
...
Call Trace:
<TASK>
put_ntfs+0x1ed/0x2a0 fs/ntfs3/super.c:463
ntfs_fs_free+0x6a/0xe0 fs/ntfs3/super.c:1363
put_fs_context+0x119/0x7a0 fs/fs_context.c:469
do_new_mount+0x2b4/0xad0 fs/namespace.c:3044
do_mount fs/namespace.c:3383 [inline]
__do_sys_mount fs/namespace.c:3591 [inline] |
| In the Linux kernel, the following vulnerability has been resolved:
fs/ntfs3: Fix missing i_op in ntfs_read_mft
There is null pointer dereference because i_op == NULL.
The bug happens because we don't initialize i_op for records in $Extend. |
| Use after free in Extensions in Google Chrome prior to 139.0.7258.66 allowed a remote attacker to potentially exploit heap corruption via a crafted Chrome Extension. (Chromium security severity: Medium) |