CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
In the Linux kernel, the following vulnerability has been resolved:
i2c: qup: jump out of the loop in case of timeout
Original logic only sets the return value but doesn't jump out of the
loop if the bus is kept active by a client. This is not expected. A
malicious or buggy i2c client can hang the kernel in this case and
should be avoided. This is observed during a long time test with a
PCA953x GPIO extender.
Fix it by changing the logic to not only sets the return value, but also
jumps out of the loop and return to the caller with -ETIMEDOUT. |
In the Linux kernel, the following vulnerability has been resolved:
arm64/entry: Mask DAIF in cpu_switch_to(), call_on_irq_stack()
`cpu_switch_to()` and `call_on_irq_stack()` manipulate SP to change
to different stacks along with the Shadow Call Stack if it is enabled.
Those two stack changes cannot be done atomically and both functions
can be interrupted by SErrors or Debug Exceptions which, though unlikely,
is very much broken : if interrupted, we can end up with mismatched stacks
and Shadow Call Stack leading to clobbered stacks.
In `cpu_switch_to()`, it can happen when SP_EL0 points to the new task,
but x18 stills points to the old task's SCS. When the interrupt handler
tries to save the task's SCS pointer, it will save the old task
SCS pointer (x18) into the new task struct (pointed to by SP_EL0),
clobbering it.
In `call_on_irq_stack()`, it can happen when switching from the task stack
to the IRQ stack and when switching back. In both cases, we can be
interrupted when the SCS pointer points to the IRQ SCS, but SP points to
the task stack. The nested interrupt handler pushes its return addresses
on the IRQ SCS. It then detects that SP points to the task stack,
calls `call_on_irq_stack()` and clobbers the task SCS pointer with
the IRQ SCS pointer, which it will also use !
This leads to tasks returning to addresses on the wrong SCS,
or even on the IRQ SCS, triggering kernel panics via CONFIG_VMAP_STACK
or FPAC if enabled.
This is possible on a default config, but unlikely.
However, when enabling CONFIG_ARM64_PSEUDO_NMI, DAIF is unmasked and
instead the GIC is responsible for filtering what interrupts the CPU
should receive based on priority.
Given the goal of emulating NMIs, pseudo-NMIs can be received by the CPU
even in `cpu_switch_to()` and `call_on_irq_stack()`, possibly *very*
frequently depending on the system configuration and workload, leading
to unpredictable kernel panics.
Completely mask DAIF in `cpu_switch_to()` and restore it when returning.
Do the same in `call_on_irq_stack()`, but restore and mask around
the branch.
Mask DAIF even if CONFIG_SHADOW_CALL_STACK is not enabled for consistency
of behaviour between all configurations.
Introduce and use an assembly macro for saving and masking DAIF,
as the existing one saves but only masks IF. |
In the Linux kernel, the following vulnerability has been resolved:
regulator: core: fix NULL dereference on unbind due to stale coupling data
Failing to reset coupling_desc.n_coupled after freeing coupled_rdevs can
lead to NULL pointer dereference when regulators are accessed post-unbind.
This can happen during runtime PM or other regulator operations that rely
on coupling metadata.
For example, on ridesx4, unbinding the 'reg-dummy' platform device triggers
a panic in regulator_lock_recursive() due to stale coupling state.
Ensure n_coupled is set to 0 to prevent access to invalid pointers. |
In the Linux kernel, the following vulnerability has been resolved:
net: appletalk: Fix use-after-free in AARP proxy probe
The AARP proxyâprobe routine (aarp_proxy_probe_network) sends a probe,
releases the aarp_lock, sleeps, then re-acquires the lock. During that
window an expire timer thread (__aarp_expire_timer) can remove and
kfree() the same entry, leading to a use-after-free.
race condition:
cpu 0 | cpu 1
atalk_sendmsg() | atif_proxy_probe_device()
aarp_send_ddp() | aarp_proxy_probe_network()
mod_timer() | lock(aarp_lock) // LOCK!!
timeout around 200ms | alloc(aarp_entry)
and then call | proxies[hash] = aarp_entry
aarp_expire_timeout() | aarp_send_probe()
| unlock(aarp_lock) // UNLOCK!!
lock(aarp_lock) // LOCK!! | msleep(100);
__aarp_expire_timer(&proxies[ct]) |
free(aarp_entry) |
unlock(aarp_lock) // UNLOCK!! |
| lock(aarp_lock) // LOCK!!
| UAF aarp_entry !!
==================================================================
BUG: KASAN: slab-use-after-free in aarp_proxy_probe_network+0x560/0x630 net/appletalk/aarp.c:493
Read of size 4 at addr ffff8880123aa360 by task repro/13278
CPU: 3 UID: 0 PID: 13278 Comm: repro Not tainted 6.15.2 #3 PREEMPT(full)
Call Trace:
<TASK>
__dump_stack lib/dump_stack.c:94 [inline]
dump_stack_lvl+0x116/0x1b0 lib/dump_stack.c:120
print_address_description mm/kasan/report.c:408 [inline]
print_report+0xc1/0x630 mm/kasan/report.c:521
kasan_report+0xca/0x100 mm/kasan/report.c:634
aarp_proxy_probe_network+0x560/0x630 net/appletalk/aarp.c:493
atif_proxy_probe_device net/appletalk/ddp.c:332 [inline]
atif_ioctl+0xb58/0x16c0 net/appletalk/ddp.c:857
atalk_ioctl+0x198/0x2f0 net/appletalk/ddp.c:1818
sock_do_ioctl+0xdc/0x260 net/socket.c:1190
sock_ioctl+0x239/0x6a0 net/socket.c:1311
vfs_ioctl fs/ioctl.c:51 [inline]
__do_sys_ioctl fs/ioctl.c:906 [inline]
__se_sys_ioctl fs/ioctl.c:892 [inline]
__x64_sys_ioctl+0x194/0x200 fs/ioctl.c:892
do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline]
do_syscall_64+0xcb/0x250 arch/x86/entry/syscall_64.c:94
entry_SYSCALL_64_after_hwframe+0x77/0x7f
</TASK>
Allocated:
aarp_alloc net/appletalk/aarp.c:382 [inline]
aarp_proxy_probe_network+0xd8/0x630 net/appletalk/aarp.c:468
atif_proxy_probe_device net/appletalk/ddp.c:332 [inline]
atif_ioctl+0xb58/0x16c0 net/appletalk/ddp.c:857
atalk_ioctl+0x198/0x2f0 net/appletalk/ddp.c:1818
Freed:
kfree+0x148/0x4d0 mm/slub.c:4841
__aarp_expire net/appletalk/aarp.c:90 [inline]
__aarp_expire_timer net/appletalk/aarp.c:261 [inline]
aarp_expire_timeout+0x480/0x6e0 net/appletalk/aarp.c:317
The buggy address belongs to the object at ffff8880123aa300
which belongs to the cache kmalloc-192 of size 192
The buggy address is located 96 bytes inside of
freed 192-byte region [ffff8880123aa300, ffff8880123aa3c0)
Memory state around the buggy address:
ffff8880123aa200: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
ffff8880123aa280: 00 00 00 00 fc fc fc fc fc fc fc fc fc fc fc fc
>ffff8880123aa300: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb
^
ffff8880123aa380: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc
ffff8880123aa400: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
================================================================== |
In the Linux kernel, the following vulnerability has been resolved:
ice: Fix a null pointer dereference in ice_copy_and_init_pkg()
Add check for the return value of devm_kmemdup()
to prevent potential null pointer dereference. |
In the Linux kernel, the following vulnerability has been resolved:
nilfs2: reject invalid file types when reading inodes
To prevent inodes with invalid file types from tripping through the vfs
and causing malfunctions or assertion failures, add a missing sanity check
when reading an inode from a block device. If the file type is not valid,
treat it as a filesystem error. |
In the Linux kernel, the following vulnerability has been resolved:
mptcp: plug races between subflow fail and subflow creation
We have races similar to the one addressed by the previous patch between
subflow failing and additional subflow creation. They are just harder to
trigger.
The solution is similar. Use a separate flag to track the condition
'socket state prevent any additional subflow creation' protected by the
fallback lock.
The socket fallback makes such flag true, and also receiving or sending
an MP_FAIL option.
The field 'allow_infinite_fallback' is now always touched under the
relevant lock, we can drop the ONCE annotation on write. |
In the Linux kernel, the following vulnerability has been resolved:
ipv6: mcast: Delay put pmc->idev in mld_del_delrec()
pmc->idev is still used in ip6_mc_clear_src(), so as mld_clear_delrec()
does, the reference should be put after ip6_mc_clear_src() return. |
In the Linux kernel, the following vulnerability has been resolved:
hwmon: (corsair-cpro) Validate the size of the received input buffer
Add buffer_recv_size to store the size of the received bytes.
Validate buffer_recv_size in send_usb_cmd(). |
In the Linux kernel, the following vulnerability has been resolved:
tracing: Add down_write(trace_event_sem) when adding trace event
When a module is loaded, it adds trace events defined by the module. It
may also need to modify the modules trace printk formats to replace enum
names with their values.
If two modules are loaded at the same time, the adding of the event to the
ftrace_events list can corrupt the walking of the list in the code that is
modifying the printk format strings and crash the kernel.
The addition of the event should take the trace_event_sem for write while
it adds the new event.
Also add a lockdep_assert_held() on that semaphore in
__trace_add_event_dirs() as it iterates the list. |
In the Linux kernel, the following vulnerability has been resolved:
dmaengine: nbpfaxi: Fix memory corruption in probe()
The nbpf->chan[] array is allocated earlier in the nbpf_probe() function
and it has "num_channels" elements. These three loops iterate one
element farther than they should and corrupt memory.
The changes to the second loop are more involved. In this case, we're
copying data from the irqbuf[] array into the nbpf->chan[] array. If
the data in irqbuf[i] is the error IRQ then we skip it, so the iterators
are not in sync. I added a check to ensure that we don't go beyond the
end of the irqbuf[] array. I'm pretty sure this can't happen, but it
seemed harmless to add a check.
On the other hand, after the loop has ended there is a check to ensure
that the "chan" iterator is where we expect it to be. In the original
code we went one element beyond the end of the array so the iterator
wasn't in the correct place and it would always return -EINVAL. However,
now it will always be in the correct place. I deleted the check since
we know the result. |
In the Linux kernel, the following vulnerability has been resolved:
phy: tegra: xusb: Fix unbalanced regulator disable in UTMI PHY mode
When transitioning from USB_ROLE_DEVICE to USB_ROLE_NONE, the code
assumed that the regulator should be disabled. However, if the regulator
is marked as always-on, regulator_is_enabled() continues to return true,
leading to an incorrect attempt to disable a regulator which is not
enabled.
This can result in warnings such as:
[ 250.155624] WARNING: CPU: 1 PID: 7326 at drivers/regulator/core.c:3004
_regulator_disable+0xe4/0x1a0
[ 250.155652] unbalanced disables for VIN_SYS_5V0
To fix this, we move the regulator control logic into
tegra186_xusb_padctl_id_override() function since it's directly related
to the ID override state. The regulator is now only disabled when the role
transitions from USB_ROLE_HOST to USB_ROLE_NONE, by checking the VBUS_ID
register. This ensures that regulator enable/disable operations are
properly balanced and only occur when actually transitioning to/from host
mode. |
In the Linux kernel, the following vulnerability has been resolved:
comedi: pcl812: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
if ((1 << it->options[1]) & board->irq_bits) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. Valid `it->options[1]` values that select the IRQ
will be in the range [1,15]. The value 0 explicitly disables the use of
interrupts. |
In the Linux kernel, the following vulnerability has been resolved:
comedi: aio_iiro_16: Fix bit shift out of bounds
When checking for a supported IRQ number, the following test is used:
if ((1 << it->options[1]) & 0xdcfc) {
However, `it->options[i]` is an unchecked `int` value from userspace, so
the shift amount could be negative or out of bounds. Fix the test by
requiring `it->options[1]` to be within bounds before proceeding with
the original test. Valid `it->options[1]` values that select the IRQ
will be in the range [1,15]. The value 0 explicitly disables the use of
interrupts. |
In the Linux kernel, the following vulnerability has been resolved:
bpf: Reject %p% format string in bprintf-like helpers
static const char fmt[] = "%p%";
bpf_trace_printk(fmt, sizeof(fmt));
The above BPF program isn't rejected and causes a kernel warning at
runtime:
Please remove unsupported %\x00 in format string
WARNING: CPU: 1 PID: 7244 at lib/vsprintf.c:2680 format_decode+0x49c/0x5d0
This happens because bpf_bprintf_prepare skips over the second %,
detected as punctuation, while processing %p. This patch fixes it by
not skipping over punctuation. %\x00 is then processed in the next
iteration and rejected. |
In the Linux kernel, the following vulnerability has been resolved:
smb: client: fix use-after-free in cifs_oplock_break
A race condition can occur in cifs_oplock_break() leading to a
use-after-free of the cinode structure when unmounting:
cifs_oplock_break()
_cifsFileInfo_put(cfile)
cifsFileInfo_put_final()
cifs_sb_deactive()
[last ref, start releasing sb]
kill_sb()
kill_anon_super()
generic_shutdown_super()
evict_inodes()
dispose_list()
evict()
destroy_inode()
call_rcu(&inode->i_rcu, i_callback)
spin_lock(&cinode->open_file_lock) <- OK
[later] i_callback()
cifs_free_inode()
kmem_cache_free(cinode)
spin_unlock(&cinode->open_file_lock) <- UAF
cifs_done_oplock_break(cinode) <- UAF
The issue occurs when umount has already released its reference to the
superblock. When _cifsFileInfo_put() calls cifs_sb_deactive(), this
releases the last reference, triggering the immediate cleanup of all
inodes under RCU. However, cifs_oplock_break() continues to access the
cinode after this point, resulting in use-after-free.
Fix this by holding an extra reference to the superblock during the
entire oplock break operation. This ensures that the superblock and
its inodes remain valid until the oplock break completes. |
In the Linux kernel, the following vulnerability has been resolved:
clone_private_mnt(): make sure that caller has CAP_SYS_ADMIN in the right userns
What we want is to verify there is that clone won't expose something
hidden by a mount we wouldn't be able to undo. "Wouldn't be able to undo"
may be a result of MNT_LOCKED on a child, but it may also come from
lacking admin rights in the userns of the namespace mount belongs to.
clone_private_mnt() checks the former, but not the latter.
There's a number of rather confusing CAP_SYS_ADMIN checks in various
userns during the mount, especially with the new mount API; they serve
different purposes and in case of clone_private_mnt() they usually,
but not always end up covering the missing check mentioned above. |
In the Linux kernel, the following vulnerability has been resolved:
usb: gadget: configfs: Fix OOB read on empty string write
When writing an empty string to either 'qw_sign' or 'landingPage'
sysfs attributes, the store functions attempt to access page[l - 1]
before validating that the length 'l' is greater than zero.
This patch fixes the vulnerability by adding a check at the beginning
of os_desc_qw_sign_store() and webusb_landingPage_store() to handle
the zero-length input case gracefully by returning immediately. |
In the Linux kernel, the following vulnerability has been resolved:
HID: core: ensure the allocated report buffer can contain the reserved report ID
When the report ID is not used, the low level transport drivers expect
the first byte to be 0. However, currently the allocated buffer not
account for that extra byte, meaning that instead of having 8 guaranteed
bytes for implement to be working, we only have 7. |
In the Linux kernel, the following vulnerability has been resolved:
HID: core: do not bypass hid_hw_raw_request
hid_hw_raw_request() is actually useful to ensure the provided buffer
and length are valid. Directly calling in the low level transport driver
function bypassed those checks and allowed invalid paramto be used. |