| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In the Linux kernel, the following vulnerability has been resolved:
usb: cdns3: change place of 'priv_ep' assignment in cdns3_gadget_ep_dequeue(), cdns3_gadget_ep_enable()
If 'ep' is NULL, result of ep_to_cdns3_ep(ep) is invalid pointer
and its dereference with priv_ep->cdns3_dev may cause panic.
Found by Linux Verification Center (linuxtesting.org) with SVACE. |
| In the Linux kernel, the following vulnerability has been resolved:
net: phy: Don't register LEDs for genphy
If a PHY has no driver, the genphy driver is probed/removed directly in
phy_attach/detach. If the PHY's ofnode has an "leds" subnode, then the
LEDs will be (un)registered when probing/removing the genphy driver.
This could occur if the leds are for a non-generic driver that isn't
loaded for whatever reason. Synchronously removing the PHY device in
phy_detach leads to the following deadlock:
rtnl_lock()
ndo_close()
...
phy_detach()
phy_remove()
phy_leds_unregister()
led_classdev_unregister()
led_trigger_set()
netdev_trigger_deactivate()
unregister_netdevice_notifier()
rtnl_lock()
There is a corresponding deadlock on the open/register side of things
(and that one is reported by lockdep), but it requires a race while this
one is deterministic.
Generic PHYs do not support LEDs anyway, so don't bother registering
them. |
| In the Linux kernel, the following vulnerability has been resolved:
usb: xhci_plat_remove: avoid NULL dereference
Since commit 4736ebd7fcaff1eb8481c140ba494962847d6e0a ("usb: host:
xhci-plat: omit shared hcd if either root hub has no ports")
xhci->shared_hcd can be NULL, which causes the following Oops
on reboot:
[ 710.124450] systemd-shutdown[1]: Rebooting.
[ 710.298861] xhci-hcd xhci-hcd.2.auto: remove, state 4
[ 710.304217] usb usb3: USB disconnect, device number 1
[ 710.317441] xhci-hcd xhci-hcd.2.auto: USB bus 3 deregistered
[ 710.323280] xhci-hcd xhci-hcd.2.auto: remove, state 1
[ 710.328401] usb usb2: USB disconnect, device number 1
[ 710.333515] usb 2-3: USB disconnect, device number 2
[ 710.467649] xhci-hcd xhci-hcd.2.auto: USB bus 2 deregistered
[ 710.475450] Unable to handle kernel NULL pointer dereference at virtual address 00000000000003b8
[ 710.484425] Mem abort info:
[ 710.487265] ESR = 0x0000000096000004
[ 710.491060] EC = 0x25: DABT (current EL), IL = 32 bits
[ 710.496427] SET = 0, FnV = 0
[ 710.499525] EA = 0, S1PTW = 0
[ 710.502716] FSC = 0x04: level 0 translation fault
[ 710.507648] Data abort info:
[ 710.510577] ISV = 0, ISS = 0x00000004
[ 710.514462] CM = 0, WnR = 0
[ 710.517480] user pgtable: 4k pages, 48-bit VAs, pgdp=00000008b0050000
[ 710.523976] [00000000000003b8] pgd=0000000000000000, p4d=0000000000000000
[ 710.530961] Internal error: Oops: 96000004 [#1] PREEMPT SMP
[ 710.536551] Modules linked in: rfkill input_leds snd_soc_simple_card snd_soc_simple_card_utils snd_soc_nau8822 designware_i2s snd_soc_core dw_hdmi_ahb_audio snd_pcm_dmaengine arm_ccn panfrost ac97_bus gpu_sched snd_pcm at24 fuse configfs sdhci_of_dwcmshc sdhci_pltfm sdhci nvme led_class mmc_core nvme_core bt1_pvt polynomial tp_serio snd_seq_midi snd_seq_midi_event snd_seq snd_timer snd_rawmidi snd_seq_device snd soundcore efivarfs ipv6
[ 710.575286] CPU: 7 PID: 1 Comm: systemd-shutdow Not tainted 5.19.0-rc7-00043-gfd8619f4fd54 #1
[ 710.583822] Hardware name: T-Platforms TF307-MB/BM1BM1-A, BIOS 5.6 07/06/2022
[ 710.590972] pstate: 40000005 (nZcv daif -PAN -UAO -TCO -DIT -SSBS BTYPE=--)
[ 710.597949] pc : usb_remove_hcd+0x34/0x1e4
[ 710.602067] lr : xhci_plat_remove+0x74/0x140
[ 710.606351] sp : ffff800009f3b7c0
[ 710.609674] x29: ffff800009f3b7c0 x28: ffff000800960040 x27: 0000000000000000
[ 710.616833] x26: ffff800008dc22a0 x25: 0000000000000000 x24: 0000000000000000
[ 710.623992] x23: 0000000000000000 x22: ffff000805465810 x21: ffff000805465800
[ 710.631149] x20: ffff000800f80000 x19: 0000000000000000 x18: ffffffffffffffff
[ 710.638307] x17: ffff000805096000 x16: ffff00080633b800 x15: ffff000806537a1c
[ 710.645465] x14: 0000000000000001 x13: 0000000000000000 x12: ffff00080378d6f0
[ 710.652621] x11: ffff00080041a900 x10: ffff800009b204e8 x9 : ffff8000088abaa4
[ 710.659779] x8 : ffff000800960040 x7 : ffff800009409000 x6 : 0000000000000001
[ 710.666936] x5 : ffff800009241000 x4 : ffff800009241440 x3 : 0000000000000000
[ 710.674094] x2 : ffff000800960040 x1 : ffff000800960040 x0 : 0000000000000000
[ 710.681251] Call trace:
[ 710.683704] usb_remove_hcd+0x34/0x1e4
[ 710.687467] xhci_plat_remove+0x74/0x140
[ 710.691400] platform_remove+0x34/0x70
[ 710.695165] device_remove+0x54/0x90
[ 710.698753] device_release_driver_internal+0x200/0x270
[ 710.703992] device_release_driver+0x24/0x30
[ 710.708273] bus_remove_device+0xe0/0x16c
[ 710.712293] device_del+0x178/0x390
[ 710.715797] platform_device_del.part.0+0x24/0x90
[ 710.720514] platform_device_unregister+0x30/0x50
[ 710.725232] dwc3_host_exit+0x20/0x30
[ 710.728907] dwc3_remove+0x174/0x1b0
[ 710.732494] platform_remove+0x34/0x70
[ 710.736254] device_remove+0x54/0x90
[ 710.739840] device_release_driver_internal+0x200/0x270
[ 710.745078] device_release_driver+0x24/0x30
[ 710.749359] bus_remove_device+0xe0/0x16c
[ 710.753380] device_del+0x178/0x390
[ 710.756881] platform_device_del.part
---truncated--- |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/hfi1: fix potential memory leak in setup_base_ctxt()
setup_base_ctxt() allocates a memory chunk for uctxt->groups with
hfi1_alloc_ctxt_rcv_groups(). When init_user_ctxt() fails, uctxt->groups
is not released, which will lead to a memory leak.
We should release the uctxt->groups with hfi1_free_ctxt_rcv_groups()
when init_user_ctxt() fails. |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/rxe: Fix BUG: KASAN: null-ptr-deref in rxe_qp_do_cleanup
The function rxe_create_qp calls rxe_qp_from_init. If some error
occurs, the error handler of function rxe_qp_from_init will set
both scq and rcq to NULL.
Then rxe_create_qp calls rxe_put to handle qp. In the end,
rxe_qp_do_cleanup is called by rxe_put. rxe_qp_do_cleanup directly
accesses scq and rcq before checking them. This will cause
null-ptr-deref error.
The call graph is as below:
rxe_create_qp {
...
rxe_qp_from_init {
...
err1:
...
qp->rcq = NULL; <---rcq is set to NULL
qp->scq = NULL; <---scq is set to NULL
...
}
qp_init:
rxe_put{
...
rxe_qp_do_cleanup {
...
atomic_dec(&qp->scq->num_wq); <--- scq is accessed
...
atomic_dec(&qp->rcq->num_wq); <--- rcq is accessed
}
} |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/siw: Fix duplicated reported IW_CM_EVENT_CONNECT_REPLY event
If siw_recv_mpa_rr returns -EAGAIN, it means that the MPA reply hasn't
been received completely, and should not report IW_CM_EVENT_CONNECT_REPLY
in this case. This may trigger a call trace in iw_cm. A simple way to
trigger this:
server: ib_send_lat
client: ib_send_lat -R <server_ip>
The call trace looks like this:
kernel BUG at drivers/infiniband/core/iwcm.c:894!
invalid opcode: 0000 [#1] PREEMPT SMP NOPTI
<...>
Workqueue: iw_cm_wq cm_work_handler [iw_cm]
Call Trace:
<TASK>
cm_work_handler+0x1dd/0x370 [iw_cm]
process_one_work+0x1e2/0x3b0
worker_thread+0x49/0x2e0
? rescuer_thread+0x370/0x370
kthread+0xe5/0x110
? kthread_complete_and_exit+0x20/0x20
ret_from_fork+0x1f/0x30
</TASK> |
| In the Linux kernel, the following vulnerability has been resolved:
RDMA/irdma: Fix a window for use-after-free
During a destroy CQ an interrupt may cause processing of a CQE after CQ
resources are freed by irdma_cq_free_rsrc(). Fix this by moving the call
to irdma_cq_free_rsrc() after the irdma_sc_cleanup_ceqes(), which is
called under the cq_lock. |
| U-Office Force developed by e-Excellence has a SQL Injection vulnerability, allowing authenticated remote attacker to inject arbitrary SQL commands to read, modify, and delete database contents. |
| U-Office Force developed by e-Excellence has a SQL Injection vulnerability, allowing authenticated remote attacker to inject arbitrary SQL commands to read, modify, and delete database contents. |
| A weakness has been identified in SourceCodester Farm Management System 1.0. The affected element is an unknown function of the file /review.php. This manipulation of the argument pid causes sql injection. Remote exploitation of the attack is possible. The exploit has been made available to the public and could be exploited. |
| A flaw has been found in SourceCodester Survey Application System 1.0. This impacts the function save_user/update_user of the file /LoginRegistration.php. Executing manipulation of the argument fullname can lead to sql injection. The attack may be performed from remote. The exploit has been published and may be used. Other parameters might be affected as well. |
| A vulnerability has been found in SourceCodester Food Ordering System 1.0. Affected is an unknown function of the file /view-ticket.php. The manipulation of the argument ID leads to sql injection. It is possible to initiate the attack remotely. The exploit has been disclosed to the public and may be used. |
| In the Linux kernel, the following vulnerability has been resolved:
HID: core: Harden s32ton() against conversion to 0 bits
Testing by the syzbot fuzzer showed that the HID core gets a
shift-out-of-bounds exception when it tries to convert a 32-bit
quantity to a 0-bit quantity. Ideally this should never occur, but
there are buggy devices and some might have a report field with size
set to zero; we shouldn't reject the report or the device just because
of that.
Instead, harden the s32ton() routine so that it returns a reasonable
result instead of crashing when it is called with the number of bits
set to 0 -- the same as what snto32() does. |
| In the Linux kernel, the following vulnerability has been resolved:
mm: fix a UAF when vma->mm is freed after vma->vm_refcnt got dropped
By inducing delays in the right places, Jann Horn created a reproducer for
a hard to hit UAF issue that became possible after VMAs were allowed to be
recycled by adding SLAB_TYPESAFE_BY_RCU to their cache.
Race description is borrowed from Jann's discovery report:
lock_vma_under_rcu() looks up a VMA locklessly with mas_walk() under
rcu_read_lock(). At that point, the VMA may be concurrently freed, and it
can be recycled by another process. vma_start_read() then increments the
vma->vm_refcnt (if it is in an acceptable range), and if this succeeds,
vma_start_read() can return a recycled VMA.
In this scenario where the VMA has been recycled, lock_vma_under_rcu()
will then detect the mismatching ->vm_mm pointer and drop the VMA through
vma_end_read(), which calls vma_refcount_put(). vma_refcount_put() drops
the refcount and then calls rcuwait_wake_up() using a copy of vma->vm_mm.
This is wrong: It implicitly assumes that the caller is keeping the VMA's
mm alive, but in this scenario the caller has no relation to the VMA's mm,
so the rcuwait_wake_up() can cause UAF.
The diagram depicting the race:
T1 T2 T3
== == ==
lock_vma_under_rcu
mas_walk
<VMA gets removed from mm>
mmap
<the same VMA is reallocated>
vma_start_read
__refcount_inc_not_zero_limited_acquire
munmap
__vma_enter_locked
refcount_add_not_zero
vma_end_read
vma_refcount_put
__refcount_dec_and_test
rcuwait_wait_event
<finish operation>
rcuwait_wake_up [UAF]
Note that rcuwait_wait_event() in T3 does not block because refcount was
already dropped by T1. At this point T3 can exit and free the mm causing
UAF in T1.
To avoid this we move vma->vm_mm verification into vma_start_read() and
grab vma->vm_mm to stabilize it before vma_refcount_put() operation.
[surenb@google.com: v3] |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: validate command request size
In commit 2b9b8f3b68ed ("ksmbd: validate command payload size"), except
for SMB2_OPLOCK_BREAK_HE command, the request size of other commands
is not checked, it's not expected. Fix it by add check for request
size of other commands. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix wrong next length validation of ea buffer in smb2_set_ea()
There are multiple smb2_ea_info buffers in FILE_FULL_EA_INFORMATION request
from client. ksmbd find next smb2_ea_info using ->NextEntryOffset of
current smb2_ea_info. ksmbd need to validate buffer length Before
accessing the next ea. ksmbd should check buffer length using buf_len,
not next variable. next is the start offset of current ea that got from
previous ea. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix out of bounds read in smb2_sess_setup
ksmbd does not consider the case of that smb2 session setup is
in compound request. If this is the second payload of the compound,
OOB read issue occurs while processing the first payload in
the smb2_sess_setup(). |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: validate session id and tree id in the compound request
This patch validate session id and tree id in compound request.
If first operation in the compound is SMB2 ECHO request, ksmbd bypass
session and tree validation. So work->sess and work->tcon could be NULL.
If secound request in the compound access work->sess or tcon, It cause
NULL pointer dereferecing error. |
| In the Linux kernel, the following vulnerability has been resolved:
ksmbd: fix out-of-bound read in smb2_write
ksmbd_smb2_check_message doesn't validate hdr->NextCommand. If
->NextCommand is bigger than Offset + Length of smb2 write, It will
allow oversized smb2 write length. It will cause OOB read in smb2_write. |
| A vulnerability was found in SourceCodester Food Ordering System 1.0. Affected by this vulnerability is an unknown functionality of the file /routers/edit-orders.php. The manipulation of the argument ID results in sql injection. It is possible to launch the attack remotely. The exploit has been made public and could be used. |