CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
Cross-site scripting (XSS) vulnerability in SYNO.Core.PersonalNotification.Event in Synology DiskStation Manager (DSM) before 6.1.4-15217-3 allows remote authenticated users to inject arbitrary web script or HTML via the package parameter. |
Systems with microprocessors utilizing speculative execution and branch prediction may allow unauthorized disclosure of information to an attacker with local user access via a side-channel analysis. |
Use of insufficiently random values vulnerability in SYNO.Encryption.GenRandomKey in Synology DiskStation Manager (DSM) before 6.2-23739 allows man-in-the-middle attackers to compromise non-HTTPS sessions via unspecified vectors. |
Information exposure vulnerability in SYNO.Core.ACL in Synology DiskStation Manager (DSM) before 6.2-23739-2 allows remote authenticated users to determine the existence and obtain the metadata of arbitrary files via the file_path parameter. |
Some HTTP/2 implementations are vulnerable to resource loops, potentially leading to a denial of service. The attacker creates multiple request streams and continually shuffles the priority of the streams in a way that causes substantial churn to the priority tree. This can consume excess CPU. |
Improper limitation of a pathname to a restricted directory ('Path Traversal') vulnerability in PDF Viewer component in Synology DiskStation Manager (DSM) before 6.2.4-25553 allows remote authenticated users to read limited files via unspecified vectors. |
Improper certificate validation vulnerability in OpenVPN client in Synology DiskStation Manager (DSM) before 6.2.3-25426-2 allows man-in-the-middle attackers to spoof servers and obtain sensitive information via a crafted certificate. |
Synology DiskStation Manager (DSM) before 6.2.3-25426-2 does not set the Secure flag for the session cookie in an HTTPS session, which makes it easier for remote attackers to capture this cookie by intercepting its transmission within an HTTP session. |
Some HTTP/2 implementations are vulnerable to a reset flood, potentially leading to a denial of service. The attacker opens a number of streams and sends an invalid request over each stream that should solicit a stream of RST_STREAM frames from the peer. Depending on how the peer queues the RST_STREAM frames, this can consume excess memory, CPU, or both. |
Improper limitation of a pathname to a restricted directory ('Path Traversal') vulnerability in webapi component in Synology DiskStation Manager (DSM) before 6.2.3-25423 allows remote authenticated users to delete arbitrary files via unspecified vectors. |
A statement in the System Programming Guide of the Intel 64 and IA-32 Architectures Software Developer's Manual (SDM) was mishandled in the development of some or all operating-system kernels, resulting in unexpected behavior for #DB exceptions that are deferred by MOV SS or POP SS, as demonstrated by (for example) privilege escalation in Windows, macOS, some Xen configurations, or FreeBSD, or a Linux kernel crash. The MOV to SS and POP SS instructions inhibit interrupts (including NMIs), data breakpoints, and single step trap exceptions until the instruction boundary following the next instruction (SDM Vol. 3A; section 6.8.3). (The inhibited data breakpoints are those on memory accessed by the MOV to SS or POP to SS instruction itself.) Note that debug exceptions are not inhibited by the interrupt enable (EFLAGS.IF) system flag (SDM Vol. 3A; section 2.3). If the instruction following the MOV to SS or POP to SS instruction is an instruction like SYSCALL, SYSENTER, INT 3, etc. that transfers control to the operating system at CPL < 3, the debug exception is delivered after the transfer to CPL < 3 is complete. OS kernels may not expect this order of events and may therefore experience unexpected behavior when it occurs. |