| CVE |
Vendors |
Products |
Updated |
CVSS v3.1 |
| In libavformat/rl2.c in FFmpeg 3.3.3, a DoS in rl2_read_header() due to lack of an EOF (End of File) check might cause huge CPU and memory consumption. When a crafted RL2 file, which claims a large "frame_count" field in the header but does not contain sufficient backing data, is provided, the loops (for offset and size tables) would consume huge CPU and memory resources, since there is no EOF check inside these loops. |
| Integer overflow in the mov_build_index function in libavformat/mov.c in FFmpeg before 2.8.8, 3.0.x before 3.0.3 and 3.1.x before 3.1.1 allows remote attackers to have unspecified impact via vectors involving sample size. |
| Unspecified vulnerability in FFmpeg before 0.10.3 has unknown impact and attack vectors, a different vulnerability than CVE-2012-2771, CVE-2012-2773, CVE-2012-2780, and CVE-2012-2781. |
| Unspecified vulnerability in FFmpeg before 0.10.3 has unknown impact and attack vectors, a different vulnerability than CVE-2012-2771, CVE-2012-2778, CVE-2012-2780, and CVE-2012-2781. |
| FFmpeg before 2017-02-04 has an out-of-bounds write caused by a heap-based buffer overflow related to the decode_frame_common function in libavcodec/pngdec.c. |
| Stack-based buffer overflow in the color_string_to_rgba function in libavcodec/xpmdec.c in FFmpeg 3.3 before 3.3.1 allows remote attackers to cause a denial of service (application crash) or possibly have unspecified other impact via a crafted file. |
| Unspecified vulnerability in FFmpeg before 0.10.3 has unknown impact and attack vectors, a different vulnerability than CVE-2012-2773, CVE-2012-2778, CVE-2012-2780, and CVE-2012-2781. |
| In libavformat/mvdec.c in FFmpeg 3.3.3, a DoS in mv_read_header() due to lack of an EOF (End of File) check might cause huge CPU and memory consumption. When a crafted MV file, which claims a large "nb_frames" field in the header but does not contain sufficient backing data, is provided, the loop over the frames would consume huge CPU and memory resources, since there is no EOF check inside the loop. |
| The ff_amf_get_field_value function in libavformat/rtmppkt.c in FFmpeg 3.3.2 allows remote RTMP servers to cause a denial of service (Segmentation Violation and application crash) via a crafted stream. |
| In libavformat/mov.c in FFmpeg 3.3.3, a DoS in read_tfra() due to lack of an EOF (End of File) check might cause huge CPU and memory consumption. When a crafted MOV file, which claims a large "item_count" field in the header but does not contain sufficient backing data, is provided, the loop would consume huge CPU and memory resources, since there is no EOF check inside the loop. |
| Double free vulnerability in FFmpeg 3.3.4 and earlier allows remote attackers to cause a denial of service via a crafted AVI file. |
| The swri_audio_convert function in audioconvert.c in FFmpeg libswresample through 3.0.101, as used in FFmpeg 3.4.1, aubio 0.4.6, and other products, allows remote attackers to cause a denial of service (NULL pointer dereference and application crash) via a crafted audio file. |
| The dnxhd_decode_header function in libavcodec/dnxhddec.c in FFmpeg 3.0 through 3.3.2 allows remote attackers to cause a denial of service (out-of-array access) or possibly have unspecified other impact via a crafted DNxHD file. |
| FFmpeg before 2017-01-24 has an out-of-bounds write caused by a heap-based buffer overflow related to the ipvideo_decode_block_opcode_0xA function in libavcodec/interplayvideo.c and the avcodec_align_dimensions2 function in libavcodec/utils.c. |
| A vulnerability was found in FFmpeg 2.0. It has been classified as problematic. Affected is the function dnxhd_init_rc of the file libavcodec/dnxhdenc.c. The manipulation leads to memory corruption. It is possible to launch the attack remotely. It is recommended to apply a patch to fix this issue. |
| A vulnerability was found in FFmpeg 2.0 and classified as problematic. This issue affects the function get_siz of the file libavcodec/jpeg2000dec.c. The manipulation leads to memory corruption. The attack may be initiated remotely. It is recommended to apply a patch to fix this issue. |
| A vulnerability has been found in FFmpeg 2.0 and classified as problematic. This vulnerability affects the function decode_hextile of the file libavcodec/vmnc.c. The manipulation leads to memory corruption. The attack can be initiated remotely. It is recommended to apply a patch to fix this issue. |
| A vulnerability, which was classified as problematic, was found in FFmpeg 2.0. This affects the function decode_vol_header of the file libavcodec/mpeg4videodec.c. The manipulation leads to memory corruption. It is possible to initiate the attack remotely. It is recommended to apply a patch to fix this issue. |
| A vulnerability, which was classified as problematic, has been found in FFmpeg 2.0. Affected by this issue is the function output_frame of the file libavcodec/h264.c. The manipulation leads to memory corruption. The attack may be launched remotely. It is recommended to apply a patch to fix this issue. |
| A vulnerability classified as problematic was found in FFmpeg 2.0. Affected by this vulnerability is the function intra_pred of the file libavcodec/hevcpred_template.c. The manipulation leads to memory corruption. The attack can be launched remotely. It is recommended to apply a patch to fix this issue. |